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Abstract—Streaming anomaly detection in multivariate time
series is an important problem relevant for automatic monitoring
of various devices. This paper tackles the problem of streaming
anomaly detection by extending a framework for the purpose of
incorporating model-based approaches and evaluating previously
uncombined methods for a total number of 26 distinct machine-
learning-based algorithms. The framework identifies four fun-
damental components inherent to many streaming anomaly
detection algorithms and one or more methods are presented for
each component. It is found that a simple and computationally
less expensive strategy for detecting concept drift yields almost
identical results to the ”KSWIN” strategy, when applied to
measuring concept drift in a training set relevant for training
a machine learning model. A secondary experiment supports the
effectiveness of finetuning a machine learning model after the
detection of concept drift for the purpose of detecting anomalies.

Index Terms—Machine learning, anomaly detection, stream
mining, online learning, multivariate time series

I. INTRODUCTION

Time series are an increasingly important format of data and
their analysis offers many insights. The subfield of anomaly
detection in time series also shows much research interest
by the number of publications. With higher automation and
autonomy in vehicles and the proliferation of edge computing
devices, real time anomaly detection on streams of data is
very relevant. This paper aims to build on and extend the
”SAFARI” framework [1] to formalize every component of a
streaming anomaly detection algorithm. Thereby, a selection
of algorithms will be presented, all of which include a machine
learning (ML) model.
The differentiation of components of a streaming anomaly
detection algorithm into data representation, learning strategy,
nonconformity measure and anomaly scoring of SAFARI [1]
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will be adapted in order to accommodate model-based ap-
proaches. More specifically, the ”reference group”, consisting
of a selection of instances deemed ”normal”, is extended to
include model parameters that are allowed to change. The
overall idea to this end is observing the changing reference
group to detect concept drift. Once concept drift has been
detected, the ML model is trained on the most recent reference
group to maintain anomaly detection capability.

The experiments presented in this work encompass five
different ML models being evaluated with different learning
strategies. In total, this results in 26 different streaming
anomaly detection algorithms. Evaluations are performed on
a selection of multivariate time series anomaly detection
benchmarks including Daphnet [2], Exathlon [3] and SMD
[4]. To this end, the NAB score [5], volume under the surface
(VUS) [6] and area under the precision-recall curve are used as
metrics. The significance of training the ML model on the most
recent reference group, once concept drift has been detected,
is analyzed.

Our contribution can be summarized as following:
• We extend the SAFARI framework [1] to model-based

approaches and
• provide the first evaluation of previously uncombined

methods for multivariate streaming anomaly detection to
a total number of 26 distinct algorithms.

In Section II, relevant previous work will be presented to
provide important background knowledge before the adapted
framework is defined in Section III. Section IV then continues
to define and explain all methods that are implemented and
Section V presents the experiments and the obtained results.
Finally, Section VI summarizes this paper and gives an outlook
on future research directions.

II. RELATED WORK

Previous anomaly detection approaches can be classified
into five distinct categories: statistical, similarity-based,
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prediction-based, information theoretic, and grammar-based.
Statistical approaches assume the time series originates
from a known or unknown stochastic process. Most often, a
statistical model is fitted to the normal data and a statistical
test is applied on unseen data instances to determine the
probability of them being generated by the model [7]. Note
that this also includes several regression models, such as
ARIMA. Similarity-based approaches require the computation
of a distance metric between subsequences of the time
series. Thereby, the nearest neighbor, density or distance
to cluster centroids are used as indicators of normalness.
Prediction-based approaches encompass both model-based
regression and classification. The former includes forecasting,
reconstruction or predicting custom nonconformity scores,
such as in the isolation forest algorithm [8] or the hierarchical
temporal model [9]. The latter includes all models that learn
features in order to directly predict whether a subsequence
is anomalous. Information theoretic approaches calculate the
information contained in the overall dataset via different
information theoretic measures, such as Kolmogorov
complexity and entropy [7]. As it is assumed that anomalies
induce irregularities and therefore increase the information
content of the dataset, the goal is to find a set of instances,
which when removed, lead to the greatest reduction of
information. Lastly, grammar-based approaches discretize
subsequences of a time series and apply grammar induction
in order to identify substrings, which are rarely used in the
grammar rules, as potential anomalies [10].

Another aspect to anomaly detection approaches is their
capability for online processing of data streams. Many ap-
proaches have been adapted to improve this capability, such
as in PCB-iForest [11] or in an online version of the ARIMA
model [12]. Calikus et al [1] implement multiple statistical
and nearest-neighbor-based approaches, while Munir et al
[13] offer a comparison of statistical, nearest-neighbors-based
and prediction-based deep learning algorithms. However, both
evaluations are performed on univariate datasets only. In
contrast to this, Mulinka et al [14] evaluate four ML-based
approaches on a multivariate network traffic dataset, under
consideration of the possibility for concept drift to occur.
FuseAD [15] combines an ARIMA model with a prediction-
based CNN as a streaming anomaly detection approach, al-
though it does not take concept drift into account. Basheer et
al [16] develop an online density-based approach to anomaly
detection, which clusters data samples and updates clusters
at every time step, thus being able to handle concept drift.
A similar approach is pursued with SAND [17]. It updates
clusters at every time step and calculates new centroids after
two clusters are merged, without having to keep cluster ele-
ments in memory. Ribeiro et al [18] use the similarity-based
OutlierDenStream algorithm to detect intrusions in software
defined networks (SDN). DeepStream [19] leverages the learnt
representations of an autoencoder to cluster them in an online
manner. The method is however struggling with concept drift
due to an overabundance of clusters. The density of a sample is

estimated by randomized space trees in RS-Forest [20] to iden-
tify low density samples as anomalies. Ko and Comuzzi [21]
present an online anomaly detection algorithm for categorical
data and Belacel et al [22] use a prediction-based approach
to reconstruct an adaptive sliding window (ADWIN). They
detect concept drift if the rate of detected anomalies crosses
a threshold. Consequently, the adaptive window is shrinked
and the model is fine-tuned on the new window. Lastly, Wang
et al [23] implement an online K-means algorithm in Apache
Spark, which keeps a fixed number of clusters with clusters
being rebuilt at every time step based on a sliding window.

III. EXTENDED FRAMEWORK

In this section, we will adapt the components of anomaly de-
tection algorithms, defined in [1], to accommodate for model-
based algorithms, which rely on learning a set of parameters
from the data.

A. Adapted fundamental tasks

Definition III.1 (Data representation). Given a stream S :=
{s1, ..., st |si ∈ RN}, the values of the last w time steps are
transformed into a feature vector xt by a data representation
function D,

xt := D(st−w+1, ..., st) (1)

with xt ∈ Rd.

The feature vector length d thereby remains unspecified to
allow a wide range of representations.

The learning strategy defined in SAFARI [1] has the goal
of compiling a reference group of feature vectors, which is
updated at every time step. In this paper, the definition will be
generalized to a set of reference parameters θ. This change in
definition allows for the inclusion of model parameters, which
are also to be updated at every time step. In the special case
that θ consists of only feature vectors, the original definition
is recovered.

Definition III.2 (Learning strategy). Let θ0 ∈ Rl0 be a set of
reference parameters at time step 0. A learning strategy L is
a function that updates θ at every time step,

θt = L(xt, θt−1). (2)

This definition allows θi to be of a different length li for
every time step, which is important for methods relying on
accumulating feature vectors. Accordingly, the nonconformity
measure from Calikus et al [1] is changed to consider the
reference parameters instead of the reference group.

Definition III.3 (Nonconformity measure). Given the refer-
ence parameters θt and feature vector xt, a nonconformity
measure A is a function that produces a nonconformity score

at = A(xt, θt), (3)

which is representative of the ”strangeness” of feature vector
xt, according to the reference parameters θt and measure A.

Finally, a window of k nonconformity scores are considered
in the calculation of the anomaly score ft.



Definition III.4 (Anomaly scoring). An anomaly scoring
function F maps k nonconformity scores {at−k+1, ..., at} to
the final anomaly score,

ft = F (at−k+1, at). (4)

IV. METHODS

This section will introduce one or more methods for every
task previously mentioned. Thereby, the reference parameters
for the ML models will include the model parameters, as well
as a training set of stream vectors,

θi = {θmodel, Rtrain,i}. ∀i ∈ 0, ..., t (5)

A. Data representation

As machine learning models learn various representations
internally, the only data representation used in this paper will
consist of the past w stream vectors,

xt = [st−w+1, st−w+1, ..., st]
T .

Accordingly, a feature vector is of the dimensionality xt ∈
Rw×N .

B. Learning strategy

While the models and their parameter update mechanism
specify how the model parameters θmodel should be updated
based on the training set of stream vectors Rtrain, the role of
a learning strategy in this paper is to decide

1) how and when the training set should be updated and
2) when the fine-tuning process should be executed in

order to update the model parameters.
These two aspects will be addressed independently as Task
1 and Task 2 in the following. The trivial overall learning
strategy naturally is keeping the training set fixed without any
fine-tuning.

θ = {θmodel, Rtrain} = const ∀i ∈ 0, ..., t

As the training set is equivalent to the reference group defined
in SAFARI [1], all of their presented learning strategies for
updating the reference group are applicable to the training
set. This includes the sliding window (SW), uniform reservoir
(URES) and anomaly-aware reservoir (ARES). The sliding
window [1] keeps the m most recent feature vectors at all
times,

Rtrain,t =

{
Rtrain,t−1 − {xt−m}+ {xt} if t > m,

Rtrain,t−1 + {xt} otherwise.

Similarly, the uniform reservoir [1] strategy also keeps a
set of m feature vectors as its training set, although the
newest feature vector is only added with a uniformly drawn
probability P ∈ [0, 1] being lower than m

t ,

Rtrain,t =


Rtrain,t−1 + {xt} if t ≤ m

Rtrain,t−1 − {x∗}+ {xt} t > m,P < m
t

Rtrain,t−1 otherwise,

and the disregarded feature vector x∗ is chosen randomly.
Lastly, the anomaly-aware reservoir [1] considers a feature
vector’s anomaly score and the anomaly scores of all feature
vectors in the training set in order to retain the most normal
feature vectors. Let pt be a ”priority” for xt,

pt = u
λ1

exp−λ2ft ,

with u ∈ [0, 1] being drawn uniformly and λ1, λ2 > 0.
The function is monotonically decreasing and thus feature
vectors with higher priorities are more ”normal”, according
to their anomaly scores. Although, the randomly drawn base
u prevents the reservoir from converging to a fixed set of
feature vectors. For this paper’s experiments, the parameters
were further restricted to u ∈ [0.7, 0.9] and λ1 = λ2 = 3.
With the helper function

c(ps, pt) = argmin
pj

{p ∈ ps|p < pt},

the priorities of a training set are kept in

ps =


ps+ {(pt, t)} if t ≤ m

ps− {(pi, i)}+ {(pt, t)} ∃ i = c(ps, pt)

ps otherwise.

Resulting is a training set update rule that replaces a feature
vector xi, if its priority is found to be lower than the priority
of the most recent feature vector xt,

Rtrain,t =


Rtrain,t−1 + {xt} if t ≤ m

Rtrain,t−1 − {xi}+ {xt} ∃ i = c(ps, pt)

Rtrain,t−1 otherwise.

Regarding Task 2, a simple solution is to retrain the model
parameters after a regular time interval. This will be the
”regular fine-tuning” strategy, with fine-tuning occurring
after every m time steps

θmodel,t =

{
θmodel,t−1 − grads if t (mod m) = 0

θmodel,t−1 otherwise,

with grads referring to all iterative gradient updates summed
together and Opt being an optimizer function,

grads :=
∑

∀xj∈Rtrain,t−1

Opt
(

∂L(xj)

∂θmodel,t−1,j

)
.

The second strategy for Task 2, ”µ/σ-Change”, will involve
monitoring the mean and standard deviation of the training set
and fine-tuning the ML model if one of these measures exceed
a certain threshold. Keeping a running mean as

µt =


µi if t = i,

µt−1 +
1
N (xt − x∗) for Rtrain,t−1 \ {x∗} ∪ {xt},

N−1
N µt−1 +

1
N xt for Rtrain,t−1 ∪ {xt},

µt−1 if Rtrain,t = Rtrain,t−1

and a running standard deviation σt, as well as the mean µi

and standard deviation σi of the training set used for the last



training session at time step i, fine-tuning will occur if the
difference in means exceeds σi or if the standard deviation
changes to a factor of 2,

c(µi, σi, µt, σt) = (d(µi, µt) > σi) ∨ (
1

2
σi > σt > 2σi)

θmodel,t =

{
θmodel,t−1 − grads if c(µi, σi, µt, σt),

θmodel,t−1 otherwise.

The third strategy for Task 2 is called ”KSWIN” [24]
and it applies the two-sample Kolmogorov-Smirnov (KS) test
to detect significant changes between two sets of data. The
two-sample KS test is a non-parametric test for two random
variables and it tests whether their underlying distributions
are the same. In the case of two-dimensional feature vectors
{x1, ..., xt}, two training sets at different time steps Rtrain,i
and Rtrain,t and their corresponding probability distributions
Fi(x) and Ft(x), both statistical hypotheses can be written as

Null hypothesis N0 : Fi(x) = Ft(x),

Alternative hypothesis N1 : Fi(x) ̸= Ft(x).

The corresponding test statistic is defined as

disti,t = sup
x
|Fi,ri(x)− Ft,rt(x)|,

with a critical value c(α) =
√
ln 2

α . Fi,ri(x) and Ft,rt(x)

denote the empirical cumulative distribution functions of each
training set, where ri and rt are the respective training set
sizes. The null hypothesis can be rejected to a significance
level of α, if the test statistic fulfills

disti,t > c(α)

√
ri + rt
rirt

.

When dealing with multidimensional data, Raab et al [24] per-
form a KS test on every dimension individually. For simplicity,
this approach will be adopted as well for our implementation
and the test will be performed for every channel dimension
j ∈ {1, .., N} individually. Furthermore, the required distance
to trigger the test decreases with larger training set sizes, lead-
ing to many false positives when repeatedly testing. For this
reason, [24] applies a correction to obtain a new significance
level of α∗ = α

r in the case of an equal length of training
sets r = ri = rt. The model parameters will be updated if
the difference between the training set at time step t differs
from the training set at time step i to a significance level of
α according to the KS test,

θmodel,t =

{
θmodel,t−1 − grads if disti,t > c(α)

√
ri+rt
rirt

,

θmodel,t−1 otherwise.

C. Machine learning models

As the machine learning models’ predictions are required
for the nonconformity scores, this section will introduce all
ML models before moving on to the nonconformity scores.
The first model is going to be an online version of the
autoregressive integrated moving average (ARIMA) model

[12]. It consists of an autoregression (AR) model, where a
data point in a time series is the result of a linear combination
of the past q data points and a zero-mean random noise term
ϵt. It further includes a moving average (MA) model, which
is a linear regression of the past q′ noise terms. In case the
polynomial of the AR model has a unit root of multiplicity d,
a linear regression of both AR and MA is able to emulate a
non-stationary process. The resulting ARIMA(q, d, q’) model
can be expressed as

∇dst =

q′∑
i=1

βiϵt−i +

q∑
i=1

αi∇dst−i + ϵt,

with the differencing operator ∇st = st − st−1. As in the
adaptation for an online learning problem in [12], this model
is approximated by an ARIMA(q+m, d, 0) model without any
noise terms to give the prediction

s̃t(γt) =

q+m∑
i=1

γt,i∇dst−i +

d−1∑
i=0

∇ist−1,

with γt ∈ Rq+m as the only model parameter θmodel = {γt}.
The factors resulting from applying the differencing operator
multiple times can be calculated via the binomial coefficient
as

∇dst =

d∑
i=0

(−1)i
(
d

i

)
st−i.

As it stands, the online ARIMA model covers only univariate
time series and assumes the data points si to be consecutive,
originating from the same underlying process. As the opti-
mization process via gradient descent is iterative, the model
can in fact be applied to a window of consecutive data points.
Our data representation xt fits this description and its length
restricts the model parameters as w = q + m + d. When
applied to multivariate streams, this model will not take any
correlations into consideration. Instead, it will simply learn the
behavior of all channels at once, as if they were part of the
same univariate stream.
An extension of autoregressive models to multivariate
streams, taking correlations into account, exists with vector-
autoregressive (VARs) models. A stream vector st with
N > 1 is dependent upon the p previous data points,

st = ν +

p∑
i=1

Aist−i + ϵt,

with coefficient matrices Ai ∈ RN×N , intercept terms ν ∈ RN

and noise terms ϵt ∈ RN [25]. The model parameters θmodel =
{ν,A1, .., Ap} are estimated via least squares estimation. For
this purpose, an excerpt of consecutive time series data is
required and this restricts learning strategy Task 1 to the
sliding window, as it contains the original time series. Once
concept drift is detected, the model parameters are estimated
for the most recent training set.

The second ML model examined is the PCB-iForest algo-
rithm [11], which is an online version of the isolation forest



algorithm [26]. It rates the performance of individual isolation
trees by their contribution to the total score produced by all
trees and discards unnecessary trees once concept drift has
been detected. It employs the extended isolation forest [27]
algorithm to build an isolation forest model with the most
recent sliding window of a stream of size w. A branch in the
extended isolation forest algorithm is allowed to be diagonal
and its branching criteria for a stream vector is

(st − p) · n ≤ 0,

with the slope n ∈ RN and a random intercept point p ∈
[min(xt),max(xt)]

N . The branching process is repeated until
a single stream vector is isolated or a maximum depth limit
is reached. In order to judge the normalness of a new stream
vector, it traverses down all trees and the average depth across
the whole forest is the input to an anomaly scoring function,
which is compared to a fixed threshold. The performance
of individual trees can be assessed similarly by giving the
anomaly scoring function only the depth of the respective
tree i. If it contributed positively to the overall result, the
tree’s performance counter pci will increase by one and it
will decrease correspondingly for a negative contribution. In
order to detect concept drift Heigl et al [11] make use of the
KSWIN method introduced in Section IV-B. Once a drift has
been detected, only trees with pci > 0 will be retained and
their performance counters will be reset. The model parameters
of a PCB-iForest model can be summarized as

θmodel = {({(pi,j , ni,j)}, pci)|∀i, j},

with i indicating the number of trees and j being the number
of branches within tree i. The second variant for building
isolation forest models based on feature scoring evaluated by
Heigl et al [11] is not covered in this paper.

A two-layer autoencoder (AE) reconstructing a feature
vector xt is going to be used as the third model. It serves
the purpose of establishing a baseline for reconstruction-based
approaches. The input is transformed by two fully connected
layers to make a prediction x̂t as

x̂t = r−1(σ(r(xt) ∗W1 + b1) ∗W2 + b2),

where r(·) refers to a reshaping operation, which reshapes its
input to a one-dimensional vector, i.e., r(xt) ∈ RNw. The
model parameters are θmodel = {W1,W2, b1, b2}.

This simple reconstruction model is compared to the more
complex adversarial autoencoder (USAD) from [28]. With
FCi(x) = σ(x ∗ Wi + bi) as a fully-connected layer, one
encoder

E = FCe,3 ◦ FCe,2 ◦ FCe,1,

is paired with two decoders

D1 = FCd,1 ◦ FCd,2 ◦ FCd,3,

D2 = FCd,4 ◦ FCd,5 ◦ FCd,6,

where zt = E(xT
t ) is the latent vector with zt ∈ RZ ,

Z << w. Therefore, the model parameters are θmodel =

{We,i, be,i,Wd,j , bd,j |∀i, j}. Adversarial training is performed
with the loss functions

Ri = ||xt −AEi(xt)||2, Rboth = ||xt −AE2(AE1(xt))||2

LAE1 =
1

n
R1 +

(
n− 1

n

)
Rboth

LAE2 =
1

n
R2 −

(
n− 1

n

)
Rboth

where AEi = Di ◦ E and n refers to the number of training
epochs. With progressively more training epochs, the impact
of the pure reconstruction error diminishes in favor of the
adversarial loss terms.

The fifth and final ML model is the neural basis expansion
(N-BEATS) model by Oreshkin et al [29]. It relies on a
stacked block design with double residual connections for
better loss propagation. Each block produces both a forecast
and a backcast as

hl = FCl(xl),

θbl = LINEARb
l (hl), θfl = LINEARf

l (hl),

x̂l =

dim(θb
l )∑

i=1

θbl,iv
b
i , ŷl =

dim(θf
l )∑

i=1

θfl,iv
f
i ,

here exemplified for the l-th block. The projection to a
set of basis vectors vi helps with interpretability since the
weights can show the contribution of well known elements in
time series analysis, such as seasonality and trend, when the
appropriate basis functions are chosen. The model parameters
can be summarized as

θmodel = {Wl,i, bl,i, θ
b
l,j , θ

f
l,k, v

b
l,j , v

f
l,k|∀l, i, j, k}

and in this paper’s streaming scenario, the model will forecast
st based on the previous stream vectors st−w+1, ..., st−1,
which are contained in the data representation xt.

D. Nonconformity measure
The goal of a nonconformity score is to measure the

”strangeness” of a feature vector. As an additional require-
ment, a nonconformity score should map this measurement to
the interval [0, 1] with 0 representing a feature vector judged
to be normal and 1 giving an indication to an anomaly. Let
x̂t be a machine learning model’s prediction for feature vector
xt. The first nonconformity score used for this work is going
to be based on the cosine similarity,

at = 1− xt ∗ x̂t

||xt||2||x̂t||2
, or at = 1− st ∗ ŝt

||st||2||ŝt||2
for forecasting models where the stream vectors at time step t
are compared. Note that this only works for forecasting models
in the multivariate case (N > 1).
Secondly, the isolation forest algorithm comes with its own
nonconformity score

at = 2−E(h(xt))/c(n),

where E(h(x)) refers to the average tree depth across all
isolation trees and c(n) is the average depth to be expected
given n samples were used to build the isolation forest.



TABLE I: Overview of all combinations to be evaluated

Learning strategy ML model Nonconformity score Anomaly score
Task 1 Task 2

SW
URES
ARES

µ/σ, KS Online ARIMA Cosine similarity Average, Anomaly Likelihood

SW
ARES KS PCB-iForest iForest score Anomaly Likelihood

SW
URES
ARES

µ/σ, KS 2-layer AE Cosine similarity Average, Anomaly Likelihood

SW
URES
ARES

µ/σ, KS USAD Cosine similarity Average, Anomaly Likelihood

SW
URES
ARES

µ/σ, KS N-BEATS Cosine similarity Average, Anomaly Likelihood

The first column of the learning strategy refers to methods for compiling and maintaining a training set
of instances, where the options are sliding window (SW), uniform reservoir (URES) and anomaly-aware
reservoir (ARES). The second column of the learning strategy consists of methods being applied to a
training set in order to detect concept drift. These include observing the change in mean and standard
deviation (µ/σ) or applying the two-sample Kolmogorov-Smirnov test (KS). Once concept drift has
been detected, the ML model will be trained on the training set for one epoch. Note that in this context
”cosine similarity” refers to the nonconformity score of at = 1− cosine similarity.

E. Anomaly score

The last step remaining is to produce the final anomaly
score ft under consideration of the past k anomaly scores.
The simplest approach to this end is to take the average

ft =
1

k

k−1∑
j=0

at−j .

As a second anomaly score, this paper will use the anomaly
likelihood introduced by Lavin and Ahmad [9]. It compares
the previous average, now denoted as µt, to a short term
average µ̃t,

µt =
1

k

k−1∑
j=0

at−j , µ̃t =
1

k′

k′−1∑
j=0

at−j ,

where k′ << k. With σt as the standard deviation of window
k, the anomaly likelihood is defined as

ft = 1−Q

(
µ̃t − µt

σt

)
,

with Q(x) as the Gaussian tail distribution function.
The original anomaly score presented by Calikus et al [1]

will not be applied in this paper as it relies on the one-sample
Kolmogorov-Smirnov test, which requires the feature vectors
x1, ..., xt to satisfy the i.i.d. condition. As this is not the case
for our data representations, consisting of the past w stream
vectors, xt = [st−w+1, ..., st]

T , the score will not be applied
in this work.

V. RESULTS

In total, the previous section introduced one data repre-
sentation, three approaches for Task 1, three approaches for
Task 2 of the learning strategy, five different ML models, two
nonconformity scores and two anomaly scores. An overview
of all combinations to be evaluated can be found in table I.

A. Evaluation metrics

With only one data representation and one nonconformity
score for each approach, the subjects of the evaluation are
the ML models and corresponding learning strategies. Fur-
thermore, the effectiveness of anomaly scores can be judged
by comparison to the raw nonconformity scores.
As the process of fine-tuning a ML model at distinct time
steps goes beyond the analysis proposed so far, judging the
effect that fine-tuning has is chosen as a secondary goal.
Under the assumption that concept drift has occurred, a fine-
tuning session should have the immediate impact of reducing
the average nonconformity score, i.e., the difference between
the ML model’s prediction and the actual stream vector will
be lower. By itself, this fact does not matter to the task of
anomaly detection. The most important aspect to this end
is the model’s capability to distinguish between normal and
anomalous behavior. Although, it seems plausible that a fine-
tuning session would also lower the variance of the noncon-
formity scores, which would help in distinguishing anomalous
nonconformity scores. An experiment to measure the impact of
fine-tuning will be performed as such: Once concept drift has
been detected by one of the methods for learning strategy Task
2, an artificial anomaly will be introduced shortly after the
fine-tuning session. Both the previous model and the retrained
version will produce the predictions and their differences to
the actual stream vector, as well as their nonconformity scores,
will be calculated.

As the task of anomaly detection in time series usually
entails the majority of data points being nominal, considering
true negatives (TN) in an evaluation metric can lead to an
overall lower sensitivity to actual anomalies being detected,
while giving a false sense of the algorithm’s capability. For
this reason, we opt to use the precision-recall area under
the curve (PR AUC) instead of the receiver operating char-



Fig. 1: Artificial anomaly inserted from 90− 110 after concept drift has been detected. The lowest plot contains
two error bars indicating the difference between the average nonconformity score previous to the anomaly to the
maximum score observed for the anomaly. Note that the maximum score could be observed as long as time step
210, since the data representation length is 100, i.e. the model gets the past 100 stream vectors as input. The red
error bar of the model after finetuning is clearly larger than the error bar of the same model with no finetuning.

acteristic. True positives (TP), false positives (FP) and false
negatives (FN) are defined to be sequences of time steps,
following the definitions of Hundman et al [30]. Thereby,
any positive prediction within an anomaly sequence is enough
to be counted as a TP, whereas an anomaly sequence with
no positive prediction is counted as a TN. Any predicted
sequence with no overlap to an actual anomaly sequence
is counted as a FP. The second evaluation metric is the
Numenta anomaly benchmark scoring function (NAB) [5],
which considers the surroundings of an anomaly sequence to
identify TPs, FPs, and FNs and rewards early detection of the
anomaly via a sigmoidal function weighting detections in and
around an anomaly sequence. The third and final metric is the
volume under the surface (VUS) [6]. It combines point-wise
scores with the information of overlapping predicted and true
anomaly sequences. Both the anomaly score threshold as well
as a buffer region for true anomaly sequences are varied and
the volume under the resulting surface is calculated in order
to gain a parameter-free evaluation metric.

B. Experimental results

Table III lists the results of every method for the three
benchmark corpora. For all experiments, the initial training
set was chosen to be constructed from the first 5000 time
steps and the data representation length was chosen as 100.
The first thing that is apparent is the difference between
some very negative NAB scores to at the same time high
precision and recall values. This is due to the fact that NAB
scores are calculated point-wise, whereas precision and recall
is calculated based on overlapping intervals. Therefore, a long
interval of consecutive falsely predicted anomalies is counted

TABLE II: Mathematical operations for Task 2 methods

µ/σ-Change KSWIN

Additions 6Nw 2Nmw

Multiplications 2Nw 2Nmw

Comparisons 3Nw (1 + 4m)Nw log2(mw) +N

Mathematical operations required at time step t for training set length
m, data representation length w and channel size N . The KSWIN
method requires significantly more operations as the empirical CDF
for one channel consists of mw elements, compared to a size of Nw
for the mean feature vector in the µ/σ-Change method. The increased
comparisons are due to determining insertion points via binary search
for each element in both the current and historical training sets, when
compared to their concatenated array.

as only one false positive for the precision and recall measure,
while every time step in that interval contributes − 1

|anomalies|
to the NAB score.
In many cases, a performance increase can be observed for
the anomaly-aware reservoir. Furthermore, the two different
methods for concept drift detection are almost identical. This
motivates the use of the less computationally complex method,
which is the µ/σ-Change strategy as displayed in table II.
Lastly, the online ARIMA model shows an overall lower
performance than the more complex non-linear models.
Comparing the results for different anomaly scores averaged
over all algorithms, it can be observed that a better AUC and
NAB score is achieved when considering an average of non-
conformity scores compared to the raw nonconformity scores,
which is again improved on by the anomaly likelihood. The
decreasing VUS score on the other hand is an indication for
more point-wise predictions being made within the buffered



TABLE III: Experimental results

Daphnet Exathlon SMD
Prec Rec AUC VUS NAB Prec Rec AUC VUS NAB Prec Rec AUC VUS NAB

SW µ/σ 0.79 0.53 0.35 0.29 0.05 1.00 0.31 0.30 0.14 0.08 1.00 0.20 0.25 0.13 0.00

KS 0.74 0.58 0.35 0.28 0.06 1.00 0.31 0.30 0.14 0.08 1.00 0.20 0.25 0.13 0.00

URES µ/σ 0.80 0.53 0.36 0.27 0.04 1.00 0.31 0.30 0.13 0.08 1.00 0.21 0.24 0.13 0.00

KS 0.76 0.57 0.37 0.27 0.05 1.00 0.31 0.29 0.13 0.08 1.00 0.21 0.25 0.13 0.00

ARES µ/σ 0.76 0.50 0.35 0.27 0.05 1.00 0.30 0.46 0.14 0.07 1.00 0.23 0.39 0.13 0.00

Online ARIMA

KS 0.79 0.45 0.37 0.27 0.05 1.00 0.32 0.44 0.14 0.07 1.00 0.23 0.39 0.14 0.00

SW µ/σ 0.71 0.68 0.43 0.36 0.10 0.91 0.69 0.52 0.21 −106.10 0.91 0.39 0.34 0.22 0.04

KS 0.73 0.68 0.42 0.36 0.09 0.92 0.70 0.53 0.22 −118.12 0.91 0.39 0.34 0.22 0.04

URES µ/σ 0.73 0.67 0.42 0.36 0.10 0.90 0.77 0.55 0.26 −168.93 0.98 0.30 0.34 0.20 0.03

KS 0.74 0.66 0.42 0.36 0.10 0.93 0.71 0.54 0.25 −181.05 0.94 0.32 0.33 0.20 0.01

ARES µ/σ 0.71 0.69 0.51 0.31 0.10 0.98 0.59 0.60 0.27 0.35 0.91 0.43 0.46 0.27 0.02

2-layer AE

KS 0.69 0.69 0.49 0.32 0.10 0.98 0.59 0.58 0.25 0.35 0.95 0.36 0.42 0.26 0.01

SW µ/σ 0.73 0.66 0.42 0.39 0.14 0.72 0.31 0.33 0.26 0.17 1.00 0.25 0.35 0.35 0.06

KS 0.71 0.68 0.42 0.41 0.13 0.73 0.30 0.33 0.26 0.16 1.00 0.26 0.35 0.34 0.07

URES µ/σ 0.73 0.66 0.42 0.40 0.14 0.71 0.42 0.43 0.26 0.27 0.98 0.29 0.36 0.32 0.10

KS 0.74 0.65 0.42 0.40 0.13 0.71 0.42 0.44 0.26 0.25 0.97 0.31 0.37 0.32 0.10

ARES µ/σ 0.77 0.61 0.48 0.32 0.11 0.73 0.30 0.42 0.15 0.12 0.98 0.37 0.48 0.37 0.12

USAD

KS 0.75 0.62 0.46 0.32 0.11 0.73 0.31 0.43 0.15 0.12 0.98 0.38 0.48 0.36 0.13

SW µ/σ 0.76 0.62 0.39 0.27 −7.21 0.97 0.96 0.58 0.34 −547.54 0.94 0.36 0.34 0.23 0.12

KS 0.76 0.62 0.38 0.28 −8.32 0.98 0.95 0.58 0.34 −547.54 0.93 0.39 0.34 0.23 0.11

URES µ/σ 0.76 0.63 0.39 0.27 −0.62 0.98 0.94 0.57 0.34 −547.54 0.95 0.34 0.34 0.23 0.11

KS 0.77 0.63 0.40 0.27 −0.42 0.98 0.95 0.58 0.34 −547.54 0.92 0.36 0.34 0.22 0.11

ARES µ/σ 0.83 0.39 0.39 0.27 0.08 0.96 0.95 0.68 0.39 0.80 0.87 0.44 0.41 0.19 0.18

N-BEATS

KS 0.81 0.54 0.40 0.26 0.09 0.96 0.93 0.68 0.39 0.80 0.91 0.43 0.40 0.20 0.19

SW KS 0.82 0.44 0.39 0.22 0.03 0.93 0.61 0.49 0.22 0.26 0.94 0.32 0.35 0.22 0.07
PCB-iForest

ARES KS 0.79 0.47 0.38 0.22 0.03 0.94 0.61 0.49 0.21 0.26 0.91 0.35 0.34 0.22 0.07

Raw 0.73 0.57 0.27 0.36 −88.80 0.93 0.64 0.35 0.28 −346.40 0.98 0.24 0.20 0.24 −0.16

Avg 0.73 0.68 0.37 0.37 −1.62 0.90 0.63 0.37 0.25 −345.72 0.98 0.24 0.21 0.22 0.03Anomaly scores
AL 0.78 0.57 0.41 0.29 0.09 0.91 0.54 0.53 0.23 0.33 0.95 0.36 0.43 0.24 0.08

The results displayed for the 26 algorithms reflect the results averaged across both anomaly scores (average / anomaly likelihood). Precision, recall, and their area-under-the-curve
(AUC) are calculated based on overlapping intervals, whereas the NAB score is calculated point-wise. This is the reason for the disparity between very negative NAB scores and
high precision / recall scores. The algorithm essentially predicts a long consecutive interval as anomalous. For the range-based scores it is counted as one false positive, while the
NAB score counts every time step as − 1

|anomalies| . For this purpose, the VUS metric combines both point-wise scores with overlapping intervals. In the last 3 rows, the impact of
different anomaly scores is investigated by averaging over all algorithms that use them. The performance steadily increases from the raw nonconformity scores to an average of
nonconformity scores to the anomaly likelihood, when considering the NAB score.

true anomaly sequences. This could be interpreted as the
complex anomaly scores leading to a more focused prediction,
while covering less points of the true anomaly sequences.
The role of fine-tuning after a detection of concept drift is
analyzed qualitatively for one time series and one algorithm.
After concept drift has occurred, two models are maintained:
One model which is finetuned on the newest training set
and the previous model, which is not finetuned. An artificial
anomaly is inserted into the data stream shortly after in order
to measure the difference in nonconformity score. The results
are visualized in figure 1, where the error bars in the lower
plot indicate the difference in nonconformity score of the peak
of the anomaly to the previous average nonconformity score.
This difference is clearly higher for the finetuned model than
for the previous model, suggesting a better adaption to the
current stream statistics. This experiment was performed on
the dataset ”S03R01E0” of the Daphnet collection. The algo-
rithm consisted of a USAD model with a data representation
length of 100, a sliding window and the µ/σ-Change strategy
to detect concept drift.

VI. CONCLUSION

This work extended a framework for streaming anomaly
detection to incorporate machine learning approaches and
evaluated many different methods from literature in novel
combinations. It was found that the two implemented concept
drift detection strategies yielded almost identical results for the
case of a training set relevant for training a machine learning
model. This suggests the use of the computationally less com-
plex µ/σ-Change strategy. Furthermore, it is apparent from
the experimental results that range-based metrics and point-
wise metrics can be very different for the same underlying
anomaly scores. Lastly, many concepts from the literature
could be confirmed to be beneficial, including the anomaly-
aware reservoir and the anomaly likelihood.
Future research directions could include efficient hardware-
accelerated implementations of individual components of a
streaming anomaly detection algorithm or adapting further
offline anomaly detection algorithms to the streaming scenario.
Overall, streaming anomaly detection remains a challenging
problem that is becoming increasingly important with the rise
of autonomous systems and edge computing devices, and it is
likely to stay relevant in the future.
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