
Dr. Martin Werner – martin@martinwerner.de

Working with Twitter

A short lecture

www.martinwerner.de

Agenda

• Introduction

• Data Acquisition

• Geospatial Data

• Working with JSON

• Density and Distribution

• Text Mining from Twitter Data

• Summary

www.martinwerner.de

Setup your computer

In order to follow this tutorial interactively, you need to setup your
computer a bit. You will need

• a copy of jq in your path https://stedolan.github.io/jq/download/

• most preferably a bash shell and basic unix tools (mingw or git shell for
Windows)

• the following data files downloaded into a folder of your computer
sample-tweet.json and tweets.json.

• optional: QGIS if you have downloaded twitter data to visualize it
geographically

• optional: python, pip, and tweepy if you want to stream twitter data
yourself

https://stedolan.github.io/jq/download/
https://icaml.org/canon/data/textmining-nlp/twitter/asset/sample-tweet.json
https://icaml.org/canon/data/textmining-nlp/twitter/asset/sample-tweet.json
https://icaml.org/canon/data/textmining-nlp/twitter/asset/sample-tweet.json
https://icaml.org/canon/data/textmining-nlp/twitter/asset/tweets.json

Introduction

www.martinwerner.de

A tweet

Twitter in a nutshell:
- A tweet is a short message
- A hashtag is a word starting with a #. It is

used to assign a topic to a tweet.
- A mention is a word starting with @ and is

used to address a (public) message to a
person or company

- A follower is someone who subscribed for
updates from you

- A like is when someone clicks the heart
below the tweet.

- A retweet is when a (possibly commented)
copy of the tweet is send out

www.martinwerner.de

The network

A tweet object contains all of this
information (redundantly at the time of
API access).

You get it as a JSON object from the API

In other words as a nested key-value
data structure

This data structure contains all
information needed to render the tweet
including lots of information on the
account of the author.

www.martinwerner.de

Twitter Data Objects

Key Value
contributors null
truncated true

text
"The Shortest Paths Dataset used for #acm #sigspatial #gis cup has just been
released. https://t.co/pzeEleBfu9 #gis… https://t.co/IF7z1WnUDk"

is_quote_status false

in_reply_to_status_id null

id 1062405858712272900
favorite_count 3
source "Twitter for Android"
retweeted false
coordinates null
entities {…}

in_reply_to_screen_name null

www.martinwerner.de

Twitter Data Objects

Key Value

in_reply_to_user_id null

retweet_count 0
id_str "1062405858712272898"
favorited false
user {…}
geo null

in_reply_to_user_id_str null

possibly_sensitive false
lang "en"
created_at "Tue Nov 13 18:04:29 +0000 2018"

in_reply_to_status_id_str null

place null

www.martinwerner.de

Entities

www.martinwerner.de

Twitter Data Remarks

• each tweet has a unique 64 bit unsinged ID given as an integer (field id) and as a string
(field id_str)

• each tweet has a timestamp created_at and though I created this tweet in Germany
(GMT+1), it is stored in UTC (GMT+0) time zone. All tweets share this timezone. In this way,
it is very easy to relate tweets to each other on a global scale, but more difficult to relate a
tweet to the local time of day.

• the language is estimated by twitter
• Some user account information is embedded into the tweet. This is highly redundant, but

very useful for web performance: A tweet object is designed to be sufficient to render the
tweet with Javascript (e.g., create the view shown above).

• hashtags are isolated
• a field truncated has been introduced for compatibilty: when Twitter changed away from

the short 140 character tweets to longer tweets, they made all APIs return a truncated
version of all tweets that is short enough for the old API guarantee. If it is truncated, the
field truncated tells us. In addition, the tweet might contain an additional field full_text,
however, with different API options prooving that my client was aware of this new feature.

Data Acquisition

Let‘s get some tweets

www.martinwerner.de

Preparing for API Access

Twitter provides a nice and clean API and the first thing you will
need is, well, a Twitter account.

• Then, as of July 2018, you must apply for a Twitter developer
account and give some information on how you want to use the
Twitter API

• Then, you need to create an app which provides you with
credentials to use the API.

As this process is changing over time, just find it on Twitters web
pages.

www.martinwerner.de

Keys and Tokens

Setting up the app gives you

• The Consumer Key (API Key)

• The associated Consumer Secret (API Secret)

• An Access Token

• An associated Access Token Secret

Each of those is an alphanumeric string.

www.martinwerner.de

Tip: Record in secret.env

Create a file secret.env similar to

#Access Token

TWITTER_KEY=274[...]M9b

#Access Token Secret

TWITTER_SECRET=WKS[...]1oI

#Consumer Key (API Key)

TWITTER_APP_KEY=8Co[...]Plt

#Consumer Secret (API Secret)

TWITTER_APP_SECRET=cEI[...]net

• Then you can easily access them from your programs and inside your
containers, but they don‘t end up in the source code!

www.martinwerner.de

Streaming Twitter Data

Twitter provides two ways of accessing data

Query

- Ask for a certain hashtag, location, or object and get back a certain
result set

Stream

- Create a filter (specification of what you are interested in) and get
one tweet after another

www.martinwerner.de

Stream is better? Probably, but not for all…

Advantage of Streaming:

For spatial applications, I love hanging on the stream, because you
get a temporal sample of the data which is not skewed towards
temporal hotspots.

Downside of Streaming:

You need to operate a reliable system for getting the data
(interruptions lead to missing time intervals in your sample)

www.martinwerner.de

Streaming in practice

You can rely on the tweepy library to manage the Twitter API from
within python. It is simple and actively maintained. However, it is
not ultimately stable…

You can as well develop your own API client using the
documentation offered by Twitter, this can (could) be very stable…

www.martinwerner.de

Streaming Framework

auth = tweepy.OAuthHandler(os.environ['TWITTER_APP_KEY'],os.environ['TWITTER_APP_SECRET'])

auth.set_access_token(os.environ['TWITTER_KEY'], os.environ['TWITTER_SECRET'])

api = tweepy.API(auth)

stream_listener = StreamListener()

stream = tweepy.Stream(auth=api.auth, listener=stream_listener)

stream.filter(locations=[-180.0,-90.0,180.0,90.0])

$> source secret.env

$> python my-streamer.py

This attaches you to the stream. You receive information in the way that the library will
call certain functions on your object StreamListener, which you have to implement
yourself.

Running on Linux looks like

www.martinwerner.de

Streaming Details – A StreamListener

class StreamListener(tweepy.StreamListener):

 def __init__(self):

 self.outfile = open('tweets.json',"a+")

 tweepy.StreamListener.__init__(self);

 def on_status(self, status):

 tweet=json.dumps(status._json)

 print(tweet, file=self.outfile)

 def on_error(self, status_code):

 ... add proper error handling (like throwing an uncaught exception ;-)...

This very simple listener (not production ready!) opens a single file tweets.json for
appending data and writes each tweet into this file.

Note that it does not contain any error checking
(which might or might not be a good idea)

www.martinwerner.de

Wrapup

• We have now three components
– Secret.env with all the API details

– Main.py implementing the tweepy client and StreamListener class

– Hopefully a tweets.json to work with (downloaded from the API)

www.martinwerner.de

The real world

• Problem: Inevitable Faults
– Library errors: We can‘t handle (while running)

– API errors: We can‘t handle (while running)

– Host errors: We can partially handle (but do we catch all)

– Network errors: We could handle easily, but why?

• Solution:
– Fail fast: throw exceptions (don‘t catch them) all over the place and restart

your script quickly (but make sure, that you keep friendly with repeated fails –
otherwise Twitter might ban you)
• Rely on systemd, docker (with restart policy), or your own „shell“ to restart the

script and take appropriate actions and delays (e.g., exponential delay in case of
repeated error)

Working with JSON
Let us manage tweets

www.martinwerner.de

JSON

• JSON stands for JavaScript Object Notation

• JSON has become one of the central data representations on the
Internet.
– extendible,

– human-readable

– easy to write.

• It can be read by all major programming languages and has been
around for a long time in the context of RESTful services.

www.martinwerner.de

Handling JSON

• The downside of JSON is the complexity of things you can model
with it (including tweets).

• In contrast to traditional SQL or XML, tweets don‘t follow a
specific schema

• Working with tweets can be done from any good programming
language
– Writing programs for simple operations is over-complicated

– JSON can be complicated

www.martinwerner.de

JQ

Luckily, this problem has converged to a very nice query langauge
and a command line tool called JSON Query Processor (JQ)

www.martinwerner.de

JQ Basics

JQ can be used for querying and pretty-printing JSON collections
(that is files containing multiple JSON objects)

The most basic query matches everything and is expressed as“.”

• jq . tweets.json

• cat tweets.json | jq .

www.martinwerner.de

Where are the colors

www.martinwerner.de

JQ Expressing values

icaml$ cat sample-tweet.json | jq true

true

icaml$ cat sample-tweet.json | jq false

false

icaml$ cat sample-tweet.json |jq 1.42

1.42

icaml$ cat sample-tweet.json | jq '"this is a string"'

"this is astring"

www.martinwerner.de

Objects and Arrays

• Basically, JSON has two higher-order datatypes:
– Objects

• icaml$ cat sample-tweet.json | jq '{"key1":42,"key2":"a string"}‚
{
 "key1": 42,
 "key2": "a string "
}

– Arrays
• icaml$ cat sample-tweet.json |jq '[1,2,3,4]‚

[
 1,
 2,
 3,
 4
]

www.martinwerner.de

Combined

icaml$ cat sample-tweet.json | jq '{"array":[1,2,4,8],"2d array":[[1,2],[3,4]],"nested
objects":{"key":"value"}}'

{

 "array": [

 1,

 2,

 4,

 8

],

 "2d array": [

 [

 1,

 2

],

 [

 3,

 4

]

],

 "nested objects": {

 "key": "value"

 }

}

www.martinwerner.de

Extracting Fields

• The dot operator (prepending a field name) selects elements
from an object

icaml$ cat tweets.json |jq '.id_str'

"1062406263932444672"

"1062405858712272898"

"1036898465270444032"

"1034516701235372032"

"1027811999529529344"

[...]

www.martinwerner.de

Chaining…

• You can chain this operator. The second in the chain is applied to the result of the first
• .A.B is actually SELECT(B, SELECT(A,…))

icaml$ cat sample-tweet.json |jq .user.entities.url.urls

[

 {

 "url": "https://t.co/74ySSExk6l",

 "indices": [

 0,

 23

],

 "expanded_url": "http://www.martinwerner.de",

 "display_url": "martinwerner.de"

 }

]

www.martinwerner.de

Arrays and Brackets

• Bracket expressions are used to access arrays
icaml$ echo "[[1,2],[3,4]]" | jq '.[0]'
[
 1,
 2
]
icaml$ echo "[[1,2],[3,4]]" | jq '.[0][1]'
1
icaml$ echo "[[1,2],[3,4]]" | jq '.[1][0]'
2
icaml$ echo "[[1,2],[3,4]]" | jq '.[0][1]'
3
icaml$ echo "[[1,2],[3,4]]" | jq '.[1][1]'
4

www.martinwerner.de

Arrays and Brackets

• Unspecific brackets loop over the elements

icaml$ echo "[[1,2],[3,4],[5,6]]" | jq '.[][0]'

1

3

5

icaml$

Applying what we learnt (and more)

Now with real tweets…

www.martinwerner.de

Extract Hashtags

• Let us extract hashtags from a tweet object:
– Loop over all hashtags with an unspecific bracket operation:

icaml$ cat sample-tweet.json |jq '.entities.hashtags[].text'

"acm"

"sigspatial"

"gis"

"gis"

www.martinwerner.de

Now with multiple tweets

icaml$ cat tweets.json | jq '.entities.hashtags[].text'
"acm"
"sigspatial"
"gis"
"gis"
"MyData2018"
"SpatialComputing"
"GISChat"
"DataScience"
"tutorial"
"Spark"
"AWS"
"Docker"
"spatial"
"analytics"
"DataScience"

Problem: A set of tweets results in a
concatenation of the sets of hashtags each
tweet contains. This might not be what we
wanted.

Solution: Create a sequence of object instead
of a sequence of strings!

www.martinwerner.de

Maintain the structure

icaml$ cat sample-tweet.json | jq '{"id":.id_str, "hashtag": .entities.hashtags[].text}'
{
 "id": "1062405858712272898",
 "hashtag": "acm"
}
{
 "id": "1062405858712272898",
 "hashtag": "sigspatial"
}
{
 "id": "1062405858712272898",
 "hashtag": "gis"
}
{
 "id": "1062405858712272898",
 "hashtag": "gis"
}

www.martinwerner.de

Calculating with JQ

• Of course, you can calculate with JQ (as with most query languages)
icaml$ echo "[]" | jq 1+2
3
icaml$ echo "[]" | jq '"hello " + "world!"'
"hello world!"
icaml$ echo "[]" | jq '[1,2]+[3]'
[
 1,
 2,
 3
]
icaml$ echo "[]" | jq '{"key":"value"}+{"key2":"value2"}'
{
 "key": "value",
 "key2": "value2"
}
icaml$

www.martinwerner.de

Warning

• But it is not always what you expect:

icaml$ echo "[]" | jq '{"key":"value"}+{"key":"value for duplicate
key"}'

{

 "key": "value for duplicate key"

}

www.martinwerner.de

Brackets (Rounded ones)

• Sometimes, you need to scope operations into an explicit
expression. This is done using round brackets (as in math)

icaml$ echo "[]" | jq '"x"+"y"*2'

"xyy"

icaml$ echo "[]" | jq '("x"+"y")*2'

"xyxy"

www.martinwerner.de

The , operator

• If you want to run several queries, you can create a sequence of
results using the , operator:

icaml$ cat sample-tweet.json |jq '.id_str, .text'

"1062405858712272898"

"The Shortest Paths Dataset used for #acm #sigspatial #gis cup has
just been released. https://t.co/pzeEleBfu9 #gis…
https://t.co/IF7z1WnUDk"

icaml$

www.martinwerner.de

Remark:

• Actually, the generation of arrays we have seen

[1,2,3]

is a combination of the [] operator creating an array from a set
and the , operator creating a sequence, and the values 1,2, and
3.

www.martinwerner.de

Piping

• Similar to chaining for the . operator, we can pipe expressions
meaning that the result of the left expression is made the input
of the right expression.

icaml$ cat sample-tweet.json |jq '.user | .name'

www.martinwerner.de

JQ Functions

• Finally, JQ provides many functions you will want to have
(basically all you can think of and more)
– cat sample-tweet.json |jq '. | keys‚

– echo [1,2,3,4] | jq 'map(.+1)' results in [2, 3, 4, 5]

– echo '{"key":"value","key2":"value2"}' | jq 'map_values(.+"_")‘

– echo '{"key":"value","key2":"value2"}' | jq 'to_entries‘

See the JQ manual for more functions and their explanations.

Extracting Geo-Located Tweets
Finally

www.martinwerner.de

Using JQ, WKT, and CSV

• A tweet is precisely geolocated, when the field location is defined.

• Query:
– First all that have geography

– Then, extract coordinates and, for example, follower_count into an array

– Turn this array into a CSV and write it

cat <file> | jq –r ‘select(.coordinates != null)

|

[.coordinates.coordinates[0],.coordinates.coordin

ates[1],.user.followers_count] | @csv‘ > geo-

follower.txt

www.martinwerner.de

QGIS…

Result for 200k tweets:

Density and Distribution

www.martinwerner.de

Lets start the analysis

• Apply Inverse Distance Weighted Interpolation
– Create a raster in which every pixel is set up from the inversely weighted

neighbors

– Parameters 2.0 and 300x300 are fast (for a quick check)

Text Mining from Twitter Data

www.martinwerner.de

Text Mining Basics

Text Mining and Natural Language Processing

- Extract Knowledge from (natural, spoken) language

Abstract Techniques:

- Text Preprocessing

- Feature Extraction

- Model Building / Machine Learning

www.martinwerner.de

Text Preprocessing

• Stemming
Playing, Played, Plays => play, but not Plain

• Remove Stop Words
Words that are too frequent to transmit task-specific information
and, or, today, the they

• Remove Corpus-Specific Stop Words
Words that are too frequent don‘t gain information, words that are too rare cannot be learned. Remove
both categories (e.g., the top 10% of the most frequent and most rare words.

• Casing
Turn all letters to lower-case, translate complex literals like ä in German to ae. Idea: reduce
dimensionality by restricting to 26 letters + space.

• Punctation and Numbers
Punctation and numbers are similar to stopwords in that they do not transmit task-specific information
unless the text mining exploits grammar.

• White-Space Removal
In some cases, white space can be removed. This has positive and negative effects on text mining.

• and many more…

www.martinwerner.de

Warning

• Classical text mining systems do not work without pre-processing
– Dimensionality too high

– Language too complex to learn

– Datasets too small

• The best preprocessing is, however, not to preprocess
– Preprocessing always introduces information loss (often grammar,

sometimes important words like not)

– All of the preprocessing tasks themselves are language-dependent and
difficult.

www.martinwerner.de

Sparse Representation

In Text Mining, it is customary to create a vocabulary of things
(containing a few thousand „words“) and to represent a document
(sentence) with a sparse vector in which every „word“ that occurs in
„document“ implies a one in a certain location.

Given a corpus C, we create a matrix in which a row represents a
document and a column represents whether a word is in the
document.

www.martinwerner.de

Term-Document-Matrix

Document (Sentence) Inaccuracy Explain* Text …

A little inaccuracy saves a lot
of explanation

1 1 0 …

Explaining text mining is
difficult and often
inaccurate

0 1 1 …

The resulting matrix is very sparse:
- Every row contains exactly as many ones as the Document contains words.
- Every column contains exactly as many ones as the word appears in documents

www.martinwerner.de

Words are bad, what about n-grams?

• N-grams are sequences of N neighboring things
– Character n-grams (n=3):

Explanation => Exp, xpl, pla, lan, ana, nat, ati, tio, ion
– Word n-grams (n=3)

A little inaccuracy saves a lot of explanation =>
A little inaccuracy, little inaccuracy saves, inaccuracy saves a, saves a lot,
a lot of, lot of explanation

It is known (since the advent of information theory) that language
approximations with character or word n-grams capture a lot of
syntactical and grammatical structure. (see Shannon: A Mathematical
Theory of Communication; the author in which Shannon entropy is
introduced)

www.martinwerner.de

Character n-grams (1948, Shannon)

1. Zero-order approximation (symbols independent and equiprobable).
XFOML RXKHRJFFJUJ ZLPWCFWKCYJ FFJEYVKCQSGHYD QPAAMKBZAACIBZL-
HJQD.
2. First-order approximation (symbols independent but with frequencies of English
text).
OCRO HLI RGWR NMIELWIS EU LL NBNESEBYA TH EEI ALHENHTTPA OOBTTVA
NAH BRL.
3. Second-order approximation (digram structure as in English).
ON IE ANTSOUTINYS ARE T INCTORE ST BE S DEAMY ACHIN D ILONASIVE TU-
COOWE AT TEASONARE FUSO TIZIN ANDY TOBE SEACE CTISBE.
4. Third-order approximation (trigram structure as in English).
IN NO IST LAT WHEY CRATICT FROURE BIRS GROCID PONDENOME OF DEMONS-
TURES OF THE REPTAGIN IS REGOACTIONA OF CRE.

www.martinwerner.de

Word n-grams (Shannon, 1948)

5. First-order word approximation. Rather than continue with tetragram,

REPRESENTING AND SPEEDILY IS AN GOOD APT OR COME CAN
DIFFERENT NATURAL HERE HE THE A IN CAME THE TO OF TO EXPERT
GRAY COME TO FURNISHES THE LINE MESSAGE HAD BE THESE.

6. Second-order word approximation. The word transition probabilities
are correct but no further structure is included.

THE HEAD AND IN FRONTAL ATTACK ON AN ENGLISH WRITER THAT THE
CHARACTER OF THIS POINT IS THEREFORE ANOTHER METHOD FOR THE
LETTERS THAT THE TIME OF WHO EVER TOLD THE PROBLEM FOR AN
UNEXPECTED.

www.martinwerner.de

TF-IDF

Rationale: Rare Words carry more information.

TF-IDF assigns a score (weight) to a word in a document giving
higher waits to unexpected words:

Term Frequency:

𝑇𝐹(𝑤) =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑖𝑚𝑒𝑠 𝑤 𝑖𝑠 𝑖𝑛 𝐷

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑤𝑜𝑟𝑑𝑠 𝑖𝑛 𝐷

Inverse Document Frequency:

IDF w = log
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠 𝑖𝑛 𝐷

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑖𝑛𝑔 𝑤

www.martinwerner.de

TF-IDF

• TF-IDF is the product of term frequency and inverse document
frequency:

𝑇𝐹𝐼𝐷𝐹 𝑤, 𝑑, 𝐶 = 𝑇𝐹 𝑤, 𝑑, 𝐶 ⋅ 𝐼𝐷𝐹 𝑤, 𝑑, 𝐶

• This scheme is largely used in ranking keyword searches in databases,
though more advanced techniques are used for search as well.

• Example: MySQL (after creating a fulltext index)

– SELECT COUNT(*) FROM table WHERE MATCH(<column>) AGAINST(<word>);

www.martinwerner.de

Machine Learning

• Consider the tutorial from scikit-learn to learn
– It will show an example of how to build n-grams, etc.

– It contains links to advanced setups

– It links to Latent Semantic Analysis / Topic Extraction

• A topic is kind of a joint probability of vectors and the result of topic
extraction is a probability of how likely a document is covering a certain topic.
Topics can be mined from a training set or completely unsupervised.

https://scikit-learn.org/stable/tutorial/text_analytics/working_with_text_data.html

www.martinwerner.de

Text Embedding

• Sparse Vectors are good, but
– They are often too high-dimensional (one column for each word?)

– It is not easy to deal with them

• Idea
– Create a feature vector for each word such that the linear algebra

operation „+“ gets a meaning

– This is called text embedding and FastText is a simple and efficient
implementation of this regime.

www.martinwerner.de

How does it work?

• Use character-level n-grams

• Add special characters to beginning and end of word, concretely

– Matter  <ma, mat, att, tte, ter, er>

• Use deep learning (stochastic gradient decent) with a single
hidden layer of chosen dimensionality (the embedding layer,
e.g., 100d)

• Optimize

www.martinwerner.de

How does it work?

In this formula:
• t ranges over all words in the corpus
• The square bracket thing contains two loss terms

– One positive (left)
– One negative (right)

• s is a scoring function comparing two vectors. In this case, it is just the
scalar product

• l is the logistic loss

www.martinwerner.de

How does it work?

This translates to the following optimization:

Find vectors 𝒘𝒕 for words such that the vectors of words that
appear near each other (𝒄 ∈ 𝑪𝒕) are similar while vectors for
random words (negative samples, 𝒄 ∈ 𝑵𝒕,𝒄) are dissimilar

and with a few tricks (see fasttext.cc), this gives models that are
quite good…

www.martinwerner.de

Additive Structure

To some extent, relations like the following hold:

𝐾𝑖𝑛𝑔 − 𝑀𝑎𝑛 + 𝑊𝑜𝑚𝑎𝑛 ≈ 𝑄𝑢𝑒𝑒𝑛

𝑃𝑎𝑟𝑖𝑠 − 𝐹𝑟𝑎𝑛𝑐𝑒 + 𝐺𝑒𝑟𝑚𝑎𝑛𝑦 ≈ 𝐵𝑒𝑟𝑙𝑖𝑛

This depends on the choice of the scalar product and the nature of
the corpus. It highlights that complex information can be mined
from text in a unsupervised setting.

www.martinwerner.de

Text Classification with FastText

• The embeddings generated in this way can be used to train
classifiers (fasttext has a simple classifier already)
– Apply LSTM

• With more text, more complicated models are possible
– Transformer Models (check out BERT)

www.martinwerner.de

Task for Today

Step 1: Download Dataset (temporarily available !)

Step 2: Create and Visualize spatial aspects (JQ + GIS of your choice)

Step 3: Label Dataset for Fasttext

Step 4: Download pretrained weights, create your own weights, etc.

Some ideas:

 Land vs. Water: Predict if a tweet comes from land or water

 Predict Language of tweet

 Predict user category?
 Predict tourist (e.g., time zone != home time zone)

Thanks!

