
Selection and Ordering of Points-Of-Interest in
Large-Scale Indoor Navigation Systems

Martin Werner
Mobile and Distributed Systems Group, Ludwig-Maximilians University Munich

Email: martin.werner@ifi.lmu.de

Abstract—Indoor navigation systems guide users through
complex buildings, which they do not know in advance. The
complexity of public buildings such as airports, train stations
or hospitals leads to new variants of well-studied NP-hard
optimization problems such as the Traveling Salesman Problem,
where most of the classical approximations are not directly
applicable for fundamental geometric reasons. Fortunately we
are able to solve the upcoming small instances of these problems
to optimality in a very short timeframe. With this paper we define
the Partially Ordered Traveling Salesman Problem, explain how
it comes up in indoor navigation applications and present two
algorithms, which solve or approximate the Partially Ordered
Traveling Salesman Problem for small and medium size instances
in a timeframe of less than one second and hence allow for a
real time and context-aware indoor navigation experience. We
then evaluate both algorithms using realistic data modelling the
public area of Munich airport spanning nearly 200.000 square
meters.

I. INTRODUCTION

Global growth of the use of navigation applications for

organization, documentation and optimization of processes in

the outdoor area has led to increasing interest in providing

comparable services for indoor environments. However the

situation indoors is fundamentally different: First of all there is

no cheap and everywhere available positioning system in con-

trast to the outdoor situation where GPS is globally available.

The second major difference is the availability and complexity

of maps. While for the outdoor area street maps are more

or less freely available and ready to use for navigation, the

situation for indoor areas is fundamentally different. Usually

no map data is available and there is no possibility to generate

usable maps from cheap sources, such as provided by satellite

images for the outdoor case.

Nevertheless it is possible to overcome all these problems

nowadays. As there is no cheap and high quality mobile posi-

tioning technology one can use a fixed positioning technology

based on screen interaction. This idea first appeared in [1],

where a grid of autonomous displays is spread out over the

navigation space used for user interaction and positioning, and

was extended in [2], which is the basis of this research. In a

cooperation project with Munich airport we are developing a

large-scale indoor navigation system using a distributed user

interface for positioning and enhanced CAD floor plans and

lists of points of interest for navigation.

In this system the potential user interacts with a large set of

displays distributed over the area of Munich airport. To initiate

a navigation session, the user stands in front of a terminal and

can either use a video conference with an employee of the

airport to explain his needs (flight number, additional interest

in shopping and services, etc.) or use a simple touch-screen

user interface to define the points of interest for his session.

The system then dispenses a cheap RFID-card to the user

which is used to identify his navigation session. The user is

then presented with an animated map of the airport showing

the way to the next point of interest and the remaining time

until boarding if applicable. The user then can interact with

the system by putting his RFID-card on the reader of any of

the distributed displays and get information about his route

to the next point of interest and a touch-screen user interface

similar to the user interface of the prototype.

With this navigation system prototype we are facing at larger

and much more complex indoor surroundings than most of the

previous work. The indoor areas we are facing at are

• very large: the data used for the evaluation spans nearly

200.000 m2

• very restrictive: not all reachable places are reachable

to anyone and some connections are only allowed in one

direction

• semantically complex: there are many special places

such as shops, elevators, escalators and repeating points

of interest such as toilets

To support these facts, we chose to use a grid-based search

space representation of uniform high resolution. The main

navigation structure is a big graph which does not have any of

the properties common to navigation graphs: It is not planar,

it does not possess an embedding into a metric space such

that this metric space is locally equivalent to Euclidean space

(which we would need to estimate times using distances in a

sensible way).

The most complex problem which this indoor navigation

system has to solve is the topic of this research. Given a set

of points of interests at the airport, find a total ordering on

this set such that the resulting tour is reasonably short and

such that you are allowed to walk every part of the tour. At an

airport it is for example impossible to walk backwards through

security checks. In comparison to the first prototype, which

was able to handle only five points of interest in a small area

solving a simpler problem, we manage to handle up to ten

points of interest in a correct way below one second for the

2011 35th IEEE Annual Computer Software and Applications Conference

0730-3157/11 $26.00 © 2011 IEEE

DOI 10.1109/COMPSAC.2011.71

520

2011 35th IEEE Annual Computer Software and Applications Conference

0730-3157/11 $26.00 © 2011 IEEE

DOI 10.1109/COMPSAC.2011.71

523

2011 35th IEEE Annual Computer Software and Applications Conference

0730-3157/11 $26.00 © 2011 IEEE

DOI 10.1109/COMPSAC.2011.71

504

full navigation space and much more points of interest using

an approximation of the problem which leads to acceptable

quality results.

A very important consideration in this project is that the

topological information defining the navigation information

has a long lifetime and is expensive to generate. Hence the

navigation system should be set up to transparently provide

service to the complete indoor area and not only to a limited

interconnection network of points of interest. In this project

we designed and developed an indoor navigation service

that can calculate shortest routes between any two points in

the navigation space as well as order points of interest in

admissible order in a limited time-frame. Due to the fact that

the system is context-aware and can for example detect gate

changes and work with waiting times at security checks, it is

clear, that no calculations can be cached and reused and that

for each interaction with the screen all this information has to

be regenerated on the fly which imposes strong performance

requirements on the navigation system.

The rest of this paper is organized as follows: In the next

section, we define the problem in detail and compare it with

the related well-known Traveling Salesman Problem and give

hints on important differences to the usual Traveling Salesman

situation. In section III we review related work in the area of

the Traveling Salesman Problem. We do not review related

work in the area of indoor navigation; the interested reader is

referred to [1]–[7]. In section IV we explain two algorithms

that can be used to solve or approximate the Partially Ordered

Traveling Salesman Problem. In section V both algorithms are

evaluated using realistic data modelling the complete public

indoor area of Munich airport. In a final section we draw

conclusions and give hints on open questions for further

research.

II. PROBLEM STATEMENT

The problem which we want to solve with this paper is

coming up in indoor navigation applications such as the one

we are working on. Due to the similarity to the Traveling

Salesman Problem, we call this problem the Partially Ordered

Traveling Salesman Problem.

Assume we are given a weighted graph G and a partially
ordered subset P ⊆ V (G) of the vertices of G. Defining a tour
to be given by a total ordering of the vertices in P and the
length of such a tour as the sum of the length of the shortest
ways interconnecting the vertices of P in this respective order,
find the shortest tour.

Note, that the graph need not and usually will not have

any good properties such as being connected or allowing

an embedding into a metric space such that the weights are

compatible with the distance of the metric space and that the

graph will usually be very large.

This problem is to some extent similar to the well-known

Traveling Salesman Problem (TSP). A detailed discussion

of the Traveling Salesman Problem and approximations to

this problem is postponed to section III. For now, we just

formulate the Traveling Salesman Problem and discuss some

differences, their origin and their impact on the problem. The

most classical Traveling Salesman Problem formulation is the

problem of a salesman to decide in which order he should

travel a set of cities to minimize his time of travel and could

be formally described as:

Assume we are given a weighted complete graph G with
non-negative weights. Defining a tour to be given by a total
ordering of the vertices in G and the length of such a tour as
the sum of the length of the edges interconnecting the vertices
of P in this total ordering (returning home from the last to
the first vertex), find the shortest tour.

There are some important differences between the Traveling

Salesman Problem and our Partially Ordered Traveling Sales-

man Problem. Obviously the classical Traveling Salesman

Problem does not have any order relation that a solution should

fulfill. Moreover due to the nature of a salesman returning

home, we are looking for a solution which does return home.

Note that it is not important to know the home of the salesman

as every shortest tour could be rotated to start with any of

its vertices. In other words: The search space is by factor n
smaller than in our problem, because two tours are equivalent

for the original Traveling Salesman Problem, if they can be

rotated to be equal (where rotation means to move the home

city into one direction around the tour). Unfortunately in our

situation these rotations are not admissible, because they do

not respect the partial ordering.

In contrast to our general formulation of the Traveling Sales-

man Problem, the problem is often only treated in more special

cases. As these special cases are very important for most well-

studied approximation algorithms, we want to explain the most

important ones. The Metric Traveling Salesman Problem is

a Traveling Salesman Problem, where the weights have to

fulfill a triangle inequality w(ac) ≤ w(ab) + w(bc). For the

Euclidean Traveling Salesman Problem the graph possesses

an embedding into two-dimensional space R
2 such that the

weights and the Euclidean distance coincide.

It is easy to see, that for indoor areas and for a graph with

an embedding such that the weights are locally proportional

to the Euclidean distance, none of these good properties can

hold. A single ascending escalator for example leads to a short

travel time upstairs but to a completely different (longer) way

downstairs. Hence the weights can not be Euclidean as they

are not even symmetric.

For the case of the Metric Traveling Salesman problem, see

figure 1. In the depicted triangle, the travel time for edge b
is high due to the stairs, the travel time for edge c is small

due to the speed of the escalator and the travel time for the

remaining edge a can be neglected. Now it is obvious that the

relation b ≤ a+ c can be broken by speeding up the escalator

or by longer stairs. In natural language this relation reads:

”Walking a staircase is always faster if you already stand in

front of it than using an escalator next to the staircase”, which

is obviously wrong.

521524505

Nach unten

Nach oben

Stairs

Fast Escalator

a

b

c

Fig. 1. An example showing that indoor navigation areas do not lead to
Metric Traveling Salesman Problems

III. RELATED WORK

As our problem is related to the Traveling Salesman Prob-

lem, we want to review in some detail, how the Traveling

Salesman Problem has been approximated and explain the

basic idea of genetic algorithms.

A. The Traveling Salesman Problem

The Traveling Salesman Problem is a very well studied NP-

hard problem (follows from the remarkable work of Karp [8]

and the well-known fact that the Traveling Salesman Problem

is equivalent to the Hamiltonian Circuit Problem). Hence we

do not know, whether a polynomial time algorithm exists. The

simplest correct algorithm for the Traveling Salesman Problem

has a time complexity of O(n!) and consists of exhaustively

searching the space of all tours in the graph and remember

the shortest tour. Beside this, many approximation algorithms

have been studied. Approximation algorithms try to solve the

problem in polynomial time with a known relative error bound.

It has been shown, that for the case of the Traveling Salesman

Problem no k-factor approximation can exist, unless P=NP

[9]. This means, that there is no polynomial time algorithm A
such that

1

k
Opt(T) ≤ A(T) ≤ kOpt(T) for any k ≥ 1

where T is an instance of the problem, Opt(T) denotes the

length of the optimal solution and A(T) denotes the length of

the result of applying the algorithm A to the instance T .

To handle this situation, the algorithms for solving the

Traveling Salesman Problem generally make use of simpli-

fications of the problem. A very common case is that the

Traveling Salesman Problem is metric, which means, that

all triangles built from edges in the graph fulfill a suitable

triangle inequality as explained in the introduction. In this

case the simpler problem of finding a closed walk with

possibly doubled edges suffices to solve the problem. In this

situation the Christofides-Algorithm [10] is the best known

approximation algorithm with a performance ratio of k = 3
2

and a running time of O(n3).
In contrast to this geometric simplification, there are also

problem simplifications related to the technique of local

search. The basic idea is to start with some heuristically

generated initial tour and continue using ”local” modification

to the tour. The worst-case performance of these algorithms is

really bad (i.e. the tour can be very long for some instances

and the running time is exponential). Due to difficulties of

using such local search techniques while respecting a partial

ordering, we did not investigate them further.

Another successful technique is called Branch and Bound

and tries to quickly subdivide the set of all admissible solu-

tions. This technique is based on two algorithmic steps. In

the first step all admissible tours are divided into at least two

classes such that in the second step a lower bound on the length

of any solution in the subsets can be computed. Unfortunately

we did not (yet) find a way to calculate a lower bound on a

set of possible solutions in feasible time taking into account

the restrictions imposed by the partial ordering and hence are

not able to apply this idea now.

A fundamentally different idea to tackle with the Traveling

Salesman Problem comes from the area of Genetic Algorithms.

The main ingredient here is a sufficiently random process

combining partial solutions (often called ”genetic ideas” in

this context) to generate better ones. In general a genetic

algorithm uses a coding to translate a possible solution (e.g.,

a tour) into a string over a finite alphabet (e.g., a sequence of

numbers identifying a city) which can be evaluated by a cost

function (e.g., the length of the tour). Then based on the fitness

(e.g., the value of the cost function) of the chromosomes,

pairs of chromosomes are chosen with a slight randomness in

each generation and a suitable crossover of genetic material

(parts of the string) is performed. To prevent this algorithm

from getting stuck in a local optimum a mutation operation

is introduced with a specific probability. Running this game

of life for some time, the best individual chromosome of

the population becomes stronger and stronger if the crossover

operation is able to combine ideas to better ideas (i.e., if the

probability that a crossover between strong chromosomes is

stronger than before is high). For this type of algorithm it is

usually impossible or very difficult to calculate approximation

factors. Nevertheless they provide good solutions in short

computation times.

IV. A SOLUTION AND AN APPROXIMATION TO THE

PARTIALLY ORDERED TRAVELING SALESMAN PROBLEM

In this section, we define two algorithms which we used

to handle the Partially Ordered Traveling Salesman Problem

in our navigation system. When these algorithms are invoked,

the framework has generated some information for them: A

list of points of interest, a complete distance map for the

interconnection of these points, and an order number for each

point of interest. The partial ordering comes from the less-or-

equal ordering on these ordering numbers. Note, that the same

ordering number can come up multiple times.

A. The only known solution: Exhaustive Search

The first algorithm generates all permutations of the cities

and for each permutation it checks, whether this permutation is

522525506

Fig. 2. An example for the steps of the crossover operator

well-ordered and calculates the total distance keeping track of

the ordering with the shortest total length. One might wonder

here, why we are creating all permutations and not only the

admissible ones. The reason is, that we are not able to do

this in a faster way. The first reason is that by the definition

of the navigation interface we would need a sort operation

to calculate the equivalence classes defined by equality in

the partial ordering and then generate iterated permutations

inside these classes. The second reason is, that many search

operations will use a trivial partial ordering (e.g. all points of

interests except the first, where we are currently positioned,

are in the public area of the airport) and hence the partial

ordering does not efficiently reduce the search space size for

these requests.

This algorithm is correct and can be used on sufficiently

small instances to calculate the optimum solution. We will

exploit this fact to calculate relative errors for our genetic

algorithm in section V.

B. A Variant of Genetic Search for the Partially Ordered
Traveling Salesman Problem

As explained in the related work section, a Genetic Al-

gorithm is based on a survival of the fittest strategy using

partial and randomized information exchange between a set of

possible solutions. In our case a chromosome is defined to be

a list of integer values identifying the points of interest. We are

working on a fixed size population of such chromosomes in the

following way: For a fixed number of generations we calculate

a fitness value for each chromosome by calculating the length

of the encoded tour. Then we choose two individuals from the

current generation using a roulette-wheel technique, where the

probability of being chosen is equivalent to the fitness of a

chromosome in comparison to the sum over the fitness values

of all individuals. Having selected two individuals, we perform

a new crossover operation defined below and generate two

outcomes. We then choose the two fittest individuals from the

chosen two and the outcome to survive and insert them into the

next generation. As a mutation step, we replace a cromosome

with a new one which is randomly generated and correctly

ordered.

The most important operation for this genetic algorithm

is the crossover routine. Many crossover routines have been

proposed for the Traveling Salesman Problem. The Partially

Matched Crossover (PMX) appeared in [11] calculates two

crossover points and swaps the chromosome portion inbe-

tween. Then in the doubled cities outside the crossover are

being repaired using the same swaps as those done in the

crossover region. Unfortunately, a large crossover area keeps

only a small part of information intact.

A better crossover operator in this case is the Ordered

Crossover (OX) [11]. Ordered Crossover works similar by

choosing two crossover points and swapping the genes inbe-

tween the two points. But then from the remaining genes those

genes are taken which are not in the crossover area leading

to a valid tour which remains much more of the sequential

structure of a partial solution.

Another popular crossover operation uses heuristic infor-

mation. The Heuristic Crossover [12] chooses a random city

and inserts the shortest edge leaving this city in the parent

chromosomes into the outcome. With this edge chosen, the

Heuristic Crossover takes again the shortest of the outgoing

edges of the second city unless this choice introduces a cycle

and hence leads to an invalid tour. In this case a random edge

is chosen which does not lead to a cycle. This process is then

repeated until a complete offspring has been generated. This

crossover operation is not applicable in our case without using

some backtracking for the case that there is no valid edge

that can be chosen taking into account the predefined partial

ordering. This would make the crossover step very complex

and hence is not applicable in our setting. Moreover the nearest

neighbor strategy used for crossover does not pay off in many

situations. A mixture of this greedy crossover with another

more stable and faster crossover method could however be a

good choice.

For this research we are adopting the main idea of the OX

crossover operation, which is to retain the relative ordering

of the cities to some extent. This is however not enough to

generate well-ordered outcome. However we will see, that we

can rotate the outcome of the OX operator such that it is well-

ordered if the parent chromosomes are both well-ordered.

We define our crossover operator as follows:

Given two chromosomes A = (ai)i=0..n and B =
(bi)i=0..n, we start by choosing two random crossover points
0 ≤ k < l ≤ n. We construct the outcome C and D by setting
ci = bi+k for i = 0..l− k and di = ai+k for i = 0..l− k. The
remaining elements of C (resp. D) are filled in the order as
they appear in A (resp. B) after the second crossover point
(continuing at the beginning) and dropping those elements that
are already in C (resp. D).

An example for this crossover operation is given in figure2.

It is now important to repair this crossover operator such that

it completely respects the order relation. The following fact is

easy to see:

523526507

For two well-ordered chromosomes A = (ai)i=0..n and
B = (bi)i=0..n (i.e. ai ≤ ai+1 and bi ≤ bi+1 for i = 0..n− 1
in the induced ordering) the outcome of the crossover operator
admits a well-ordered rotation.

We are recombining everything in the same order as it

appeared in the parent chromosomes. If we have to leave out

some element, it is a simple application of transitivity of the

partial ordering to conclude that everything is well-ordered

except at the place where we continue from the beginning.

We can now rotate until this single place is between the end

and the beginning and get a well-ordered outcome.

Now that we have described the main ingredients of this

algorithm there remains only one non-trivial step: Generate

uniformly random well-ordered chromosomes for the initial-

ization and mutation steps. This task is a bit tricky, if you want

to do this with high performance. We decided to randomly

generate a tour and check where the first contradiction to

the partial ordering occurs and try to shuffle this element

back. If for some fixed shuffles the length of the well-ordered

subtour does not increase, we are generating a completely

random new one. It is important to see, that if this type

of generation is given an unsolvable problem, it will not

terminate. Nevertheless the decision problem, whether there

exists a well-ordered tour is difficult to solve. In essence we

did not find a way to do this without exhaustively constructing

the space of well-ordered chromosomes. But if we do this in

a sensible time, we could directly solve the Partially Ordered

Traveling Salesman Problem in this time-frame.

In practice our mechanism of finding a well-ordered chro-

mosome has shown to work. One reason for this is, that we

have only some few order classes and that most connections

inside the same ordering class are of finite weight. Putting this

in other words: The space of well-ordered chromosomes is -

in the case of an airport - relatively big compared to the space

of all tours and a random tour has a good chance of being

well-ordered.

V. EVALUATION

For the evaluation of our algorithms, we have implemented

all this functionality into a productive navigation system

modelling Munich airport. As described before, the navigation

system is based on a big weighted, directed graph with a

grid-structure of uniform high resolution. An instance of our

problem can be defined and computed using a socket interface

to a dedicated routing server. On this socket interface a list

of coordinates (inside the navigable space), an order number

defining the partial ordering and a label can be transmitted.

The navigation server then computes an asymmetric distance

map using n Dijkstra searches and starts with one of our

algorithms above. It reports back the best ordering found and

a status code. This status code can be used to distinguish

between the following three cases:

• OK: The solution is correct

• Too Complex: We did not find enough well-ordered

tours or the maximal computation time for the exhaustive

search has exceeded

• Unsolvable: The present problem does not have a solu-

tion

The case Unsolvable is only reported in case of exhaustive

search being unable to find a solution. This can be the case,

if the partial ordering contradicts an ordering of points-of-

interests enforced by edges which do only go in one direction

(e.g. passport control). An unsolvable problem is reported as

Too Complex in the genetic case.
The graph in use consists of nearly 65.000 vertices in-

terconnected by approximately 415.000 edges modelling the

accessible terrain. This graph has been generated automatically

from enhanced CAD drawings of Munich airport. For the

comparison of the complete system speed, we created a set of

220 sample problems, 20 for each problem size ranging from

2 to 12 points of interest. These sample problems consist of

randomly chosen vertices in the graph and we took care, that

they are solvable.
The results of running all these benchmark problems in

sequence on common desktop hard- and software (Intel Core2

Duo P8400 @ 2.26 GHz running Linux) is depicted in

figure 3(a). The genetic algorithms was configured to use 50

chromosomes, 2000 generations and a mutation probability

of 0.01. At first it seems to be unnatural, that the exhaustive

search is faster than the genetic variant at all. The reason for

this is, that the construction of the initial population for the

genetic approach takes more time than the exhaustive solution

for small instances. The number of loops involved in creating

well-ordered chromosomes and running a fixed number of

generations is larger than for exhaustive search. For instances

with more than 9 points of interest, exhaustive search hits the

one second limit (problems of size 9 were solved in an average

time of 1.19s) while genetic search keeps below half a second

for all problems.
From this we can conclude that for our specific navigation

systems and graph we should use exhaustive search for all

requests consisting of less than 10 points of interest. For larger

instances we should switch to the genetic approximation. For

general indoor navigation systems we can conclude that it

makes sense to use exhaustive search as an algorithm for small

instances, as it can be faster than genetic search and the well-

known fast approximations of the Traveling Salesman Problem

can not be applied.
As the genetic search is not correct and its performance (in

terms of speed and quality) depends on many factors such as

the number of chromosomes in the population, the mutation

probability and the crossover operator, we performed another

benchmark using a set of 200 solvable random problems, 25

for each problem size ranging from 4 to 11 points of interest.

The average relative error of the solutions produced by genetic

search is plotted against the two most important configuration

variables defining the population size and the generation count.

The results are depicted in figure 3(b). A relative error of 1
means, that the genetic algorithm was able to find the best

solution. As you can clearly see, bigger populations and more

generations lead to better results. In the average case, with

the configuration of 2000 generations and 50 chromosomes

524527508

0

0.2

0.4

0.6

0.8

1

1.2

2 4 6 8 10 12

Ti
m

e
(s

)

Problem Size

Exhaustive Search
Genetic Search

(a) Speed of Exhaustive Search compared to Genetic
Search

50
100

150

100000

200000

300000

1
1.02
1.04
1.06
1.08

1.1
1.12
1.14
1.16

Relative Error of GA

Population Size

Generations

(b) Relative error of GA

0.9

1

1.1

1.2

1.3

1.4

1.5

0 20 40 60 80 100 120 140 160 180 200

R
el

at
iv

e
E

rr
or

Number

Distribution of Relative Error

(c) Relative error distribution

Fig. 3. Results of the empirical evaluation using a benchmark set of 200 solvable random PoI-ordering problems

used for the first benchmark, we have an average relative error

of 1.046, which means, that we find tours that are less than

5% longer than the optimal tour in average. Unfortunately,

there were five problems (out of 200 problems) which solved

to relative errors of inbetween 20% and 25% and one with

a relative error of 45%. Note however, that the best known

approximation algorithm for the metric Traveling Salesman

Problem has a relative error bound of 3
2 which translates to

a relative error of below 50% which is not stronger than our

result. The majority (52%) solved to the optimum and 82%

solved to tours of length only 10% longer than the optimum

tour. These results can be seen in the error histogram given in

figure 3(c).

VI. CONCLUSION AND FUTURE RESEARCH

The most important result of this research is the negative

result, that for indoor navigation an approximation of the

Partially Ordered Traveling Salesman Problem using genetic

search is not a good choice for sufficiently small instances.

The genetic algorithm with our strongly order preserving

crossover operation worked well but without self-adjustment

of parameters it was slower than exhaustive search for small

problems.

In the setting of a general indoor navigation system based on

a graph structure the process of constructing the problem (e.g.

constructing the complete graph from a general big navigation

graph) takes a considerable amount of time for small instances

and is linearly increasing (this is major reason for the linear

increase of the genetic algorithm running time in figure 3(a)).

From this research, many questions arise which we did not

cover here. The most important questions are: How can we

estimate the quality of a genetic solution without knowing

the best tour in advance. For a navigation system server

the question arises, whether and how we can reuse partial

knowledge created in previous genetic search instances. A

different problem which is strongly related to this problem

is the good selection of a point of interest out of a list of

equivalent ones (e.g. choosing the ”best” toilet to be inserted

into a Partially Ordered Traveling Salesman Problem out of a

list of available toilets).

Another question goes into the direction of context-

awareness. A major strength of genetic techniques is the

blindness. This means, that the properties of the graph are not

used inside the search unless for evaluating a complete tour

for calculating the fitness function. If one considers including

routing over periodic or timetable services such as a bus, this is

a very good property. However the crossover operation should

take into account that changes in the estimated time of arrival

at a partial solution can reduce the partial solution quality.

REFERENCES

[1] C. Kray, G. Kortuem, and A. Krüger, “Adaptive navigation support
with public displays,” in IUI ’05: Proceedings of the 10th international
conference on Intelligent user interfaces. New York, NY, USA: ACM,
2005, pp. 326–328.

[2] P. Ruppel, F. Gschwandtner, C. K. Schindhelm, and C. Linnhoff-Popien,
“Indoor navigation on distributed stationary display systems,” Computer
Software and Applications Conference, Annual International, vol. 1, pp.
37–44, 2009.

[3] A. Butz, J. Baus, A. Krüger, and M. Lohse, “A hybrid indoor navigation
system,” in IUI, 2001, pp. 25–32.

[4] Y. Chen and H. Kobayashi, “Signal strength based indoor geolocation,”
in Proceedings of IEEE International Conference on Communications
(ICC ’02), vol. 1, 2002, pp. 436 –439.

[5] F. Evennou and F. Marx, “Advanced integration of wifi and inertial
navigation systems for indoor mobile positioning,” EURASIP J. Appl.
Signal Process., vol. 2006, pp. 164–164, uary.

[6] P. Bahl and V. N. Padmanabhan, “Radar: an in-building rf-based
user location and tracking system,” in Proceedings IEEE INFOCOM
2000. Conference on Computer Communications. Nineteenth Annual
Joint Conference of the IEEE Computer and Communications Societies
(Cat. No.00CH37064), vol. 2. IEEE, 2000, pp. 775–784. [Online].
Available: http://dx.doi.org/10.1109/INFCOM.2000.832252

[7] M. Werner and M. Kessel, “Organisation of indoor navigation data
from a data query perspective,” in press; accepted for publication in
the conference proceedings of UpinLBS 2010, 2010.

[8] R. M. Karp, “Reducibility among combinatorial problems,” Complexity
of Computer Computations, pp. 85–103, 1972.

[9] S. Sahni and T. Gonzalez, “P-complete approximation problems,” Jour-
nal of the ACM, vol. 23, pp. 555–565, 1976.

[10] N. Chrisofides, “Worst-case analysis of a new heuristic for the traveling
salesman problem,” Technical Report 388, Graduiate School of Indus-
trial Administration, Carnegie-Mellon University, Pittsburgh, 1976.

[11] D. E. Goldberg, Genetic Algorithms. Addision Wesley Longman, Inc.,
1989.

[12] K. Bryant, “Genetic algorithms and the traveling salesman problem,”
2000.

525528509

