
Efficiently Using Bitmap Floorplans for Indoor Navigation on Mobile Phones

Martin Werner
Mobile and Distributed Systems Group

Ludwig-Maximilians-Universität München, Germany
Email: martin.werner@ifi.lmu.de

Abstract—Pedestrian navigation applications and especially
indoor navigation applications need to describe a way in a
form that is easy to understand, remember and follow. While
in the case of outdoor vehicle navigation the distance in
meter together with a turn hint is a good description such
a description is merely useless for the indoor area. Pedestrians
do not have a good understanding of distances and turns are
not always well-defined in the indoor area. Landmarks seem to
bring the solution to this problem. With this paper we define
an algorithm to identify relevant landmarks and a general
algorithm enhancing the visualisation quality of an indoor way
using bitmap floorplans. This opens the door for automatically
generated waypoint graphs with bad visualisation properties
to be used for a multimedia indoor navigation application.
Furthermore the algorithms are implemented on a smartphone
and results on the final performance are given. The main
contribution of this paper is the reformulation of some indoor
navigation tasks as image processing tasks.

Keywords-Navigation; Image Processing;

I. INTRODUCTION

In the last decade, many new multimedia services have
been designed. These include numerous applications from
the field of location based services. Furthermore the ongoing
trend towards mobile computing and the immense devel-
opment in the field of cellular phones leads to more and
more context-information that can actually be used. While
it is relatively easy to provide location based services for
the outside area it is relatively difficult to do the same
for the indoor area. For the indoor area there are many
problems, that are solved outdoors. The first problem is
the availability of digital map data. While for most outdoor
location based services the map functionality offered by
major Internet companies (e.g., Google Maps) is enough,
there is no comparable service for the indoor area. There
are several reasons behind: The complexity of indoor maps
would be much higher than outdoors (different floors, differ-
ences in the treatment of free space). Moreover the contents
of indoor maps is often protected by intellectual property
rights of architects. Finally, there is no cheap positioning
technology available, which makes indoor location based
services attractive.

Nevertheless indoor navigation is a very promising tech-
nology. People want to have technological support for indoor
orientation, which is comparable to the outdoor situation.
Moreover there are several buildings that are either very

complex (industrial buildings) or not known to the majority
of guests (foreign airports, exhibitions) or not known exactly
enough for safety services (firefighter, police, etc.). The
most difficult task for indoor navigation is of course the
positioning of the users. But in the last decade many promis-
ing technologies are under development, which will solve
this problem completely in the near future. These include
classical signal-strength methods based on Wireless LAN
[1], [2] or more specialised approaches based on UWB [3] as
well as advanced statistical treatments of this measurement
data [4], [5].

Cellular phones are becoming more and more powerful in
terms of calculational power as well as in terms of sensing
capabilities. A complete integration of all data that a modern
cellular phone can sense will lead to indoor positioning with
acceptable accuracy in the future.

Often indoor navigation has been implemented in a rela-
tively small area due to the focus on positioning technology.
In such small settings it is not really important to have
efficient algorithms for several tasks. However large-scale
indoor navigation is an upcoming topic [6].

With this paper we want to show how the reformulation
of some subproblems of indoor navigation into image pro-
cessing tasks is possible and that modern smartphones are
able to run this type of algorithms in acceptable time. Note
that the results of these algorithms are useful not only for
indoor navigation but also for other context-aware indoor
location based services and ubiquitous computing trends.

We are focussing on two very complex tasks an indoor
navigation system has to accomplish. The first task is the
transformation of a shortest way into an augmented form,
which is easy to understand, remember and follow. Essen-
tially we are talking about how to transfer a line-strip into
a sequence of textual instructions and about how to make
several decision points in the navigation solution easy to
remember. In this paper we present a parallelisable image
processing algorithm, which finds all landmarks that can be
used to augment a given way. A good treatment of how
landmarks can be used to aid indoor navigation is [7]. We
are not talking about how to actually use this landmark
information subset for textual instruction generation, because
this would go beyond the scope of this paper and is really
indoor navigation specific, while the other algorithms have
a more general scope.

225

ICWMC 2011 : The Seventh International Conference on Wireless and Mobile Communications

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-140-3

(a) A shortest way inside a corner graph (b) A shortest way inside an accessibility graph (c) Examples of different doors. The left
door is not legal with respect to our prop-
erties while the right door is legal

Figure 1. Examples of waypoint graphs and problems

The second task, which we accomplish by a sequence
of image processing tasks, is to enhance the visualisability
of a given way. Navigation in general is often based on a
waypoint graph [8], [9]. A waypoint graph consists of a
set of waypoints and an edge in between those waypoints,
which are directly reachable from each other (usually on a
straight line of walking). As the impact of the graph size on
the performance of shortest path algorithms is high, people
have studied algorithms generating small graphs. However
the reduction of the number of waypoints in a graph leads
to fewer ways inside the graph. Hence the shortest way
inside the graph is not a way, that a human being would
choose. One of the smallest and most efficient graphs is
for example the corner graph. The corner graph is a graph,
which contains all corners of the building (map) as vertices
and an edge between two corners if and only if the direct
line inbetween these two points is inside the building and
free (walkable) space. The resulting ways tend to scrape
along walls as can be seen in Figure 1(a). Another well-
behaved form of a navigation graph consists of a subset of
a grid of waypoints in navigation space defined by some
properties (such as a minimal distance to a wall and being
inside the building) and edges between waypoints if there
is free space inbetween. A shortest way inside such a graph
can contain some flaws as can be seen in Figure 1(b). In
this example the relatively large grid size leads to the effect,
that the chosen way is too near to the left wall. Note, that
a finer grid does not help because a finer grid finally leads
to a situation comparable to the corner graph. This type of
problem is exactly what we want to remedy with the second
algorithm in this paper.

When it comes to indoor navigation it is essential to fix a
model of the surroundings. It is important to define exactly
in terms of available data, what is meant when we are talking
for instance about a room or a door. In the following chapter
we give possible definitions for this in terms of images.
Of course there are other views (especially concerning GIS
databases), which can be more flexible, but our choice is
made on the background that good GIS data does seldom

exist for the indoor area while a basic floorplan (possi-
bly scanned from a building blueprint) is almost always
available. Furthermore cellular phones have more difficulties
with handling vector GIS-data and the associated queries
than with handling and manipulating bitmaps. Moreover the
standardisation of bitmap file formats allows for flexible and
sustainable treatment of indoor navigation data.

In the following section, we fix an environmental model
in terms of bitmap floorplans, in Section III we explain
the problem of finding relevant landmarks and describe an
algorithm solving this problem. In Section IV we describe an
algorithm to enhance the visualizability of ways, which also
clarifies turning points useful for textual description of the
way. We then explain an implementation of this algorithm
for mobile phones and give experimental results on the
performance. In Section VI we finalize this paper with a
conclusion.

II. THE INDOOR ENVIRONMENTAL MODEL AND ITS
ASSOCIATION WITH BITMAPS

For this paper we want to describe now exactly our
environmental model and how it is setup with different
bitmaps. Starting with a building (or site) in some reference
system, we define the bitmap projection by first projecting
the building information into an orthogonal coordinate sys-
tem (if it is not given in an orthogonal coordinate system)
and map the bounding box of the building to a bitmap by a
choice of pixel size. In our experiments, pixel sizes of 0.15m
x 0.15m seem to work fairly well.

For this bitmap floorplan we start with some definitions,
which do not exactly resemble the definitions of common
agreement.

Definition 1: An area is a subset of available pixels.
Note that an area need not be connected or otherwise have

properties, which the term area describes in other contexts.
Definition 2: The floodfill-closure of a point (x, y) is the

area inside the bitmap that would be filled by a usual 4-
neighbour-floodfill operation at (x, y) with a colour that is
not used elsewhere in the bitmap. The 4-neighbour-floodfill
operation is defined to fill a pixel if it is of the same

226

ICWMC 2011 : The Seventh International Conference on Wireless and Mobile Communications

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-140-3

colour as the start pixel and in this case continues with the
neighbouring pixels above, left, right and below.

Definition 3: An area is called floodfill-connected if and
only if it is the floodfill-closure of one (and hence any) of
its points.

Definition 4: A room is a floodfill-connected area.
Definition 5: The outside-space is the floodfill-closure of

the pixel coordinate (0,0).
Definition 6: A room R1 is inside another room R2 if

and only if R1 is in the convex closure of R2.
Of course this definition does not recover the usual term

of a room is inside another room. But as it is unlikely that
a room that is contained in another room in our sense is not
reachable easyily this discrepancy to the real world is not
severe.

With these definition in place we formulate some proper-
ties that a floorplan should have for the application of our
algorithms below:

• Closed-Building-Property: The building is closed by
black lines and completely surrounded by white space.
This essentially means, that the outside space resembles
the usual definition of what is outside a building.

• Doors-Are-Rooms-Property: A door inside the building
is drawn such that it itself is a room in the sense of
Definition 4. An example of a legal door and an illegal
door is given in Figure 1(c).

• Walkable-Space-Is-Known: There is an oracle telling
us whether a straight line between two points lies in
walkable space (which is defined to be the space where
a human being can walk).

For the rest of the paper, we assume that we are given a
bitmap - simply called floorplan in the sequel - where these
properties hold.

III. LANDMARK SEARCH

Pedestrian navigation results need a different presentation
form as compared to vehicle navigation results. While for a
vehicle navigation system based on GPS the typical errors
of the positioning system do not have much influence on the
identification of a turn and the orientation of the vehicle is
known by the orientation of the street, this is not true for the
indoor area. We usually have positioning systems with low
accuracy and different possible turns within this accuracy.
Typically the positioning errors do not allow the distinction
of two doors, which are directly next to each other. In this
situation, we want to augment a navigation solution with
semantical information such that it is easy to remember and
follow. For this the concept of a landmark is often used.
Landmarks are objects in the surroundings having a local
uniqueness and being eye-catching. All classical signs are
landmarks in this sense. But even shops and plants can serve
as landmarks. With landmark information the problems of
coarse positioning can be reduced. If landmarks are drawn
into a map in form of a pictogram (e.g., the logos of the

shops) the relation between the proposed way and those
shops can be easily remembered and used for difficult way
decisions. This role of a landmark is best explained by
the following textual instruction, which can be generated
if good landmark information is available: ”Before the post
office turn left. Then you will see a red sculpture in 300m
distance.” As you can see from this sentence, landmark
information can be used to make explicit the position of
a turn in relation to semantical information (as opposed to
geometric information). Landmark information can also be
used to enhance the confidence in having a good orientation
as you can see from the second sentence.

The difficult task is now to reduce the set of landmarks
(which is usually very big) to the set of landmarks that are
visible from the way to facilitate more complex election
algorithms for the actual integration of landmark information
into visual and textual representations of the way.

The following algorithm is a good symbiosis of a search
technology with a geometric enhancement technology. The
results of this algorithms is an image containing a set of
visible landmarks identified by a colour convention. It is
possible to very quickly extract this information as a list
of visible landmarks or to directly integrate the graphical
result into the visualisation pipeline. One could for example
highlight the visible space, draw a pictogram over visible
landmark positions and so on.

A. Landmark Search By Image Processing
With the following algorithm we solve the problem of

finding relevant landmarks out of a list of landmarks visible
from within a way. Common algorithms to solve this prob-
lem are more or less searching for landmarks by checking
whether a given landmark is visible. As there is no good
geometric ordering of landmarks (i.e., reducing the search
space by a distance limit will miss good landmarks in long
rooms) it is not easy to do such a search efficiently. This
type of search problem also shows up in other problems of
ubiquitous and context-aware computing.

A landmark in the sense of the following algorithm
consists of a pixel coordinate and a connected information
(identification in a database, etc.). The input of the algorithm
consists of

• A set of landmarks
• A floorplan
• A way (given as a list of points forming a line-strip)

The configurable parameters influencing this algorithms are
• The maximal viewing distance
• The length threshold used during tessellation of the way
1) Step 1: Prepare Landmark Map: The very first step

is to overlay our floorplan with drawn landmark locations.
Therefore we use a colour palette mapping a colour (that
is not used in the floorplan) to the identification data. This
mapping is symbolised in the following pseudo-codes by the
function landmark_to_colour(landmark l).

227

ICWMC 2011 : The Seventh International Conference on Wireless and Mobile Communications

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-140-3

void draw_landmarks()
copy (floorplan, landmark_map)
for each landmark l int landmark_set{
putpixel(landmark_map,

position,
landmark_to_colour(l))

}

This step is of course general and the result can be cached
for subsequent applications of this algorithm.

2) Step 2: Tessellation of the Way: As it is computa-
tionally very expensive to calculate the set of pixels, which
are visible from a line-strip, we approximate this set of
pixels by the set of pixels visible from the points of a
tessellation of the line-strip. To obtain this tesselation, we
keep inserting middlepoints between two subsequent points
until the distance between all points is shorter than the
tessellation length.

global tessellation_length
void tessellate(linestrip l)
for each segment s of l{
if (s.length() > tessellation_length)
{

s.split()
return tessellate(l)

}
}

3) Step 3: Calculate the mask bitmap: In this step we
calculate a mask, which resembles the set of pixels visible
from the way. This is done by preparing the mask bitmap to
be of the same size as the floorplan and filled with black. We
then use a radial floodfill operation starting at each point of
the tessellated way and copying every examined pixel into
the mask bitmap.

void calculate_mask()
for p in tessellated_way{

radial_flood_fill(p);
}

The radial floodfill algorithm is an algorithm, which fills
out the area surrounding a point as long as there is a direct
line between each point and the starting point. Note that the
resulting area need not be convex.

4) Step 4: Multiply the landmark map with the mask:
In this step, we stamp the visible area out of the landmark
map. For each black pixel in the mask bitmap, we black out
the same pixel in the landmark map.

void mask_out()
for each (x,y) in landmark_map{
if (mask_map(x,y) != black)

result(x,y) = landmark_map(x,y)
}

This results in a bitmap containing exactly the visible
landmarks together with their geometric location. It is now
up to the rest of the visualisation pipeline how to work
further. One could quickly scan the image and get a list
of visible landmarks or one could just overlay all landmark
pixels with a pictogram assigned to the landmark.

Though this algorithm seems to be very complex, it has
some beneficial properties. First of all it is a formulation of
the landmark problem in terms of basic image processing.
Secondly its result is near to a complete visualisation of the
landmarks and thirdly it is highly parallelisable and designed
to be run on dedicated graphics hardware. Examples for an
application of this algorithm are given in Figure 2.

IV. POST-PROCESSING WAYS

Waypoint graphs are either large or do not contain nice-
looking ways. And even if a waypoint graph contains all
nice-looking ways, these ways will not be the shortest. So
for an indoor navigation system it is difficult to find ways,
which are short and at the same time have a specific quality
with respect to visualisation. As the efficiency of search
algorithms is tightly coupled with the number of vertices
and edges inside the graph, it is common that people try to
have small waypoint graphs. Shortest ways in such graphs
tend to scrape along walls or seem otherwise unnatural.

With our algorithm, we want to post-process such ways
to obtain a relatively nice visualisation with acceptable
computational overhead.

A. An Algorithm for Post-Processing Ways for Better Visu-
alisation

Therefore we propose the following algorithm, which
essentially is a series of image processing operations. The
input of the algorithm consists of

• A way (given as a list of points forming a linestrip)
• A collision map
The configurable parameters influencing this algorithms

are
• The maximal length a point may move during the

algorithm
• The length threshold used during tessellation of the way
• The valuation choosing the best movement in a set of

possible movements
1) Step 1: Tessellation of the Way: For this algorithm

we need a tessellation of the way just as for the previous
algorithm. The reader is referred to Section III-A2 for
details.

2) Step 2: Move the tessellation points: For each point in
the tessellation of the way determine a set of points, where
we could move this point. Therefore we grow a circle until
this circle collides and if this circle collides, we move the
middlepoints away from the collision points until we get
stuck. Hence we find out the position where - in a limited

228

ICWMC 2011 : The Seventh International Conference on Wireless and Mobile Communications

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-140-3

(a) The tessellation of a way (b) The mask and landmarks (large dots) found

Figure 2. The results of the Landmark Search Algorithm

neighbourhood of each tessellation point - the biggest circle
fits into free space and move this tessellation point to this
position.

The following pseudo code illustrates this step. We found
out in experiments, that a maximal movement distance of
four times the tessellation length makes sense for relatively
fine tessellations.

global tessellation_length
for each point p {

res = grow_a_circle(p,
tessellation_length * 4)

}

The method grow_a_circle is just scanning possi-
ble positions and calculating the maximal circle in free
space centered around these positions. Each position is then
assigned a valuation composed out of the radius of the
circle and the distance of the movement. In the examples
throughout this paper, we just used a valuation, which prefers
the biggest circle in the allowed space and inbetween all
those circles with maximal radius the one, which is nearest
to the original point.

void grow_a_circle(point p, double d)
last_result = p;
for q in box (p-(d,d), p+(d,d)) {
r = maximal_radius(q);
if (is_better_than_last_result(q,r)){
last_result = p;
}
}

The results of this algorithm are given in Figure 3. As
you can see, this algorithm leads to a fairly good way.
We intentionally left a problem in the room, where the
journey ends. The algorithm is trying to keep away from
the black box (it might be a desk). The intention is to
stress, that we need a really correct map of walkable space
and to emphasise, that small disturbances can have severe

influence on this algorithm. What is not obvious but has
been tested with a multitude of other ways is the fact, that the
algorithm has the beneficial side effect of having a relatively
clear turn (e.g., a turn of merely exactly 90 degree in the
figure above) exactly where a turn should be indicated by a
text generation engine. Furthermore due to using a rotation-
invariant definition of good way, the orientation of the rooms
inside the bitmap is not important.

V. AN IMPLEMENTATION OF PPW FOR MOBILE PHONES

The algorithms presented in this paper are relatively
complex. If we apply these algorithms to long ways, the
uniform tessellation algorithm leads to many points in the
tessellation and for each of those points another complex
operation is needed. To enhance clarity, we decided to
explain the algorithms in the most simple form given above.
Of course the growing circle algorithm can gain a real
performance boost from not growing the radius one pixel at
a time. Starting with an exponential growth of the radius and
correcting the first collision by a nested interval algorithm
in comparison to the last non-colliding circle will gain
much speed. Moreover for plans where the magnitude of
rooms is constructed from parallel lines and the number
of randomly placed obstructions is small, the circle can
be replaced by a square without any harm. Using integral
images in this case makes the question, whether a square
collides computable in constant time (not depending on the
size of the square) gaining even more speed. If we can afford
the memory and the map does not change too often, we can
even compute the maximal radius for each pixel and store
it as a color component value inside another bitmap. In this
case (ignoring the time of constructing this map) we can
omit the process of growing a circle and concentrate on the
movement of the center point.

We implemented the PPW algorithms for modern smart-
phones running Android OS 2.2 and above. The Post-
Processing Ways algorithm (Section IV) is running fast
enough. The system is rendering a map into a screen buffer

229

ICWMC 2011 : The Seventh International Conference on Wireless and Mobile Communications

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-140-3

(a) Step 1: The tessellated way (b) Step 2: The result of the algorithm

Number of Points Running Time
5 0.759s
9 0.985s

17 1.633s
33 2.955s
65 5.623s

(c) Performance on HTC Desire

Figure 3. The Post-Processing Way algorithm and its performance running on HTC Desire (complete screen buffer)

(a Java bitmap of the exact pixel size of the screen), which
is then passed to our implementation of this algorithm via
Java natives. In Java natives, we are performing the image
processing as described on a 16-bit-per-pixel bitmap (using
essentially 5 bits per color). Therefore we implemented a fast
and stable bitmap manipulation library. The tesselation is
being performed in Java. Experimental performance results
for the Post-Processing Ways algorithm are given in Figure
3(c).

As you can see, for moderate numbers of tesselation
points the running time of the algorithm is quite acceptable.
The algorithm has to be run only once for each navigation
result. As the effective screen resolution of a full-screen
application (not drawing over the status bar) on the device is
480x725, the number of tesselation points to consider will
not exceed 20 points. As mobile devices are able to run
this type of algorithms natively, we are able to provide full
navigation functionality with navigation graphs, which have
relatively bad visualisation properties such as corner graphs.

VI. OUTLOOK

The feasibility of this algorithm has been shown with
corner graphs as well as with grid-based accessibility graphs.
The corner graph example from the introduction has been
used in the description of the algorithm in Section IV.

As all algorithms in this paper perform a specific inde-
pendent task (e.g., radial floodfill or growing circles) on
many elements (the points of the tessellation), they are
perfectly suited for implementation on modern many-core
architectures such as NVIDIA CUDA [10] or the upcoming
platform independent OpenCL standard [11]. In these many-
core environments hundreds of cores are ready to perform
a specific task on a stream. The only precondition for
using such architectures is that the parallelised operation is
completely independent from each other in the sense that
the ordering of execution is arbitrary. This type of execu-
tion does of course only apply to server-hosted navigation
systems unless these many-core architectures are available
on smartphones.

This work allows us to follow a new philosophy for indoor
navigation graph generation. As the visualisation quality of
the graph is less important if our algorithms are applicable,

we can drop this requirement and generate and readily use
minimal graphs such as the corner graph for navigation.

REFERENCES

[1] Y. Chen and H. Kobayashi, “Signal strength based indoor ge-
olocation,” in Proceedings of IEEE International Conference
on Communications (ICC ’02), vol. 1, 2002, pp. 436 –439.

[2] F. Evennou and F. Marx, “Advanced integration of wifi and
inertial navigation systems for indoor mobile positioning,”
EURASIP J. Appl. Signal Process., vol. 2006, pp. 164–164,
uary.

[3] C. Falsi, D. Dardari, L. Mucchi, and M. Z. Win, “Time of ar-
rival estimation for uwb localizers in realistic environments,”
EURASIP J. Appl. Signal Process., vol. 2006, pp. 152–152,
uary.

[4] M. Arulampalam, S. Maskell, N. Gordon, and T. Clapp, “A
tutorial on particle filters for online nonlinear/non-gaussian
bayesian tracking,” Signal Processing, IEEE Transactions on,
vol. 50, no. 2, pp. 174 –188, feb. 2002.

[5] F. Gustafsson, F. Gunnarsson, N. Bergman, U. Forssell,
J. Jansson, R. Karlsson, and P.-J. Nordlund, “Particle filters
for positioning, navigation and tracking,” in IEEE Transac-
tions on Signal Processing, vol. 50, no. 2, 2002, pp. 425–437.

[6] P. Ruppel, F. Gschwandtner, C. K. Schindhelm, and
C. Linnhoff-Popien, “Indoor navigation on distributed station-
ary display systems,” Computer Software and Applications
Conference, Annual International, vol. 1, pp. 37–44, 2009.

[7] A. Butz, J. Baus, A. Krüger, and M. Lohse, “A hybrid indoor
navigation system,” in IUI, 2001, pp. 25–32.

[8] P. Tozour, “Search space representations,” AI Game Program-
ming Wisdom 2, vol. 2, pp. 85–102, 2004.

[9] K. Yu, “Finding a natural-looking path by using generalized
visibility graphs,” in PRICAI 2006: Trends in Artificial In-
telligence, ser. Lecture Notes in Computer Science, Q. Yang
and G. Webb, Eds. Springer Berlin / Heidelberg, 2006, vol.
4099, pp. 170–179.

[10] NVIDIA, NVIDIA CUDA Programming Guide 2.0. NVIDIA,
2008.

[11] K. O. W. Group, “The opencl specification, version
1.0.29,” Web site: http://khronos.org/registry/cl/specs/opencl-
1.0.29.pdf [Last accessed: 13 October 2010], 2008.

230

ICWMC 2011 : The Seventh International Conference on Wireless and Mobile Communications

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-140-3

