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Abstract—With the increasing computational power of mobile
devices and the increase in the usage of ordinary location-
based services, the area of indoor location-based services is of
growing interest. Nowadays indoor location-based services are
used mainly for personalized information retrieval of maps and
points of interest. Advanced location-based functionality often
suffers from imprecise positioning methods. In this paper we
present a simple, yet powerful positioning method inside buildings
which allows for a fine-grained detection of the position and
orientation of a user while being easy to deploy and optimize.
The main contribution of this paper consists of the combination of
an image recognition system with a distance estimation algorithm
to gain a high-quality positioning service independent from any
infrastructure using the camera of a mobile device. Moreover
this type of positioning can be operated in a user-contributed
way and is less susceptible to small changes in the environment
as compared to popular WLAN-based systems. As an extension,
we propose the usage of very coarse WLAN positioning to reduce
the size of the candidate set of image recognition and hence speed
up the system.

Index Terms—Indoor Navigation; Image Processing; Location-
based Services

I. INTRODUCTION

In recent years, location-based services (LBS) began to form
an increasingly important factor in industry and research. The
growing spread and computational power of mobile phones
and the rising number of applications result in app stores full of
different location-based apps such as restaurant finders, tourist
guides and navigation systems.

One of the key enablers of location-based services was
the adoption of the easy-to-use and accurate GPS positioning
technology in mobile phones. Unfortunately, GPS is not able to
track people in indoor environments with acceptable accuracy.
Signals might get lost due to attenuation effects of roofs and
walls or lead to position fixes of very low accuracy due to
multipath propagation.

Even worse, indoor location-based services require much
higher precision guarantees than outdoor services. Errors
should not exceed a few meter to allow for a differentiation
between several floors or rooms. Otherwise, the service could
provide information for places which are quite far away from
the actual position of the target.

Existing indoor positioning techniques can be grouped by
their level of precision and the expenses for additional infras-
tructure. Dedicated indoor positioning systems such as ultra
wide band or ultrasonic systems consist of several components
with the sole purpose of determining the positions of possibly
multiple targets in indoor environments. The precision is often
high, but an expensive infrastructure is needed and hence the

navigable space is usually limited to a small area, where higher
accuracy compensates the high cost. Another class of systems
is build on existing infrastructure such as WLAN, Bluetooth or
inertial sensors for positioning. The precision of such systems
is limited, but the system can be deployed with little additional
expenses.

In this paper an approach for cheap and easy indoor
positioning is presented with no need for infrastructure com-
ponents, in the sense that the positioning can be carried out
with a mobile device using its camera. The system achieves a
high precision of a few meters, detects the viewing direction
of the user with high accuracy, is easy to setup and optimize
and is very sensitive for semantic differences in navigation
space. While a position error of one meter can lead to a wrong
room assignment, these rooms are visually different and our
system has generally a lower risk of assigning wrong semantic
positions as opposed to purely geometric positioning systems.
The approach is furthermore well-suited for indoor navigation,
as the image used for positioning can easily be augmented with
navigation instructions.

Similar to WLAN fingerprinting a database of images with
the additional information of the corresponding position, the
viewing direction, and a scale- and rotation-invariant descrip-
tion of the image, generated by the well-known SURF [1]
algorithm, is used. For the moment the database is created in
an offline phase, but purely user-generated databases or self-
calibrating systems are also possible.

The system supports three modes for the position estimation.
The first mode is based on a picture taken by the user which is
analyzed by the system (photo mode). Then the corresponding
database image is detected and finally the actual position is
computed by a comparison of the object scale in both images.
The second and the third mode are based on a video-stream
from the mobile device. The stream consists of low quality
images which are used for a continuous position estimation,
but require a more sophisticated processing due to the low
resolution and motion blur. While the second mode (averaging)
utilizes an averaging of positions derived by matching all
frames within a sliding window of the video stream, the third
mode (voting) utilizes a voting algorithm for the position
retrieval.

The paper is structured as follows: It begins with a short
description of the algorithms for image comparison used for
the matching with the database. In Section II-B related vision-
based indoor positioning systems are shortly reviewed which
is followed by a description of our system. In Section III
the results achieved with a prototypical implementation in a



(a) Screenshots of the mobile client (b) Distance estimation algorithm

Fig. 1. Screenshots from the mobile client showing the position and orientation estimate and the reference image and position information from the database
and the distance estimation algorithm using the ratio of matched pixel distance as a measure for viewpoint-to-image distance

university building are presented. Section IV concludes the
paper and describes further improvements and future work.

II. MARKERLESS INDOOR POSITIONING USING
SMARTPHONE CAMERA

In the past few years, a wide variety of image analysis
algorithms have been developed in the field of computer
vision. On the one hand, there are image transformations
which augment several visual properties of the image (e.g.,
edges [2] and corners [3]). The transformations process an
image and create a simpler version of the same image that
can be used for further analysis. On the other hand, algorithms
for the extraction of local, highly recognizable image features
provide for more stable, rotation- and scale-invariant image
processing. Both kinds of algorithms have been applied widely
to the field of image hashing [4] and object recognition [5].
The first class of image analysis algorithms suffers from
registration problems and are very sensitive to small changes
in the environment. The second class of algorithms is very
stable with respect to these problems, but suffers from more
calculational overhead and problems of local similarities (e.g.,
corners of doors that look similar throughout a complete
building). We decided to use feature transformation algorithms
as the main ingredient of localization and describe them in
more detail below.

A. Image Comparison Using Feature Points

Feature points are points inside an image which allow for a
local description that makes them highly recognizable. In the
following paragraphs two algorithms are described:

The Scale-Invariant Feature Transform (SIFT, [6]) algorithm
uses a Gaussian blur along with a scale-invariant matching of
local extrema to find a list of interest points. For each interest

point a local and rotation-invariant descriptor is calculated
which resembles some illumination-invariant properties of the
surroundings of the point. The Euclidean distance between
descriptors can be used for feature recognition as well as for
object and image recognition.

A comparable algorithm called Speeded Up Robust Features
(SURF,[1]) applies less accurate but faster approximations for
finding extrema and hence provides a faster and more memory-
efficient extraction and description of local image features
which is even possible to conduct on mobile devices.

For the recognition of images or objects, feature points
can be matched using the Euclidean distance between their
descriptors. Difficulties arise from interest points in the first
image which can be matched to multiple points in the second
image. The resulting problems are empirically solved in [6]
using an ad-hoc matching process. Empirical results from
this paper state that more than three feature points suffice to
recognize dominant objects in the focus (e.g., a main motif)
of the image and that more than ten feature points suffice
to recognize more uniform images (e.g., natural scenery,
buildings).

B. Visual Indoor Positioning and Navigation Systems

Indoor Navigation is an important emerging field in the
area of pervasive computing which tries to provide navigation
services in buildings that are comparable to the navigation in
the outside world. The main problems in buildings are the
absence of accurate and cheap positioning systems and the
unavailability of floor plans and maps with acceptable quality.
Finding the position of a mobile asset inside a building is a
difficult task. Several techniques have been developed, some
based on existing infrastructure (mostly based on WLAN [7])
and some on additional active infrastructure (radio, audio and



(a) The locations of the test images
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(b) Performance of Distance Estimation

Fig. 2. The evaluation set and results of the distance estimation algorithm

IR beacons) or on additional passive infrastructure (RFID, 2D
barcode, etc.). A good overview of wireless indoor position-
ing methods is given in [8] while several indoor navigation
systems are presented in [9]. We focus on computer vision
methods for accurate indoor positioning without the need for
any additional infrastructure. Those methods can be broadly
categorized into two classes. The first class is applied in an
unknown environment where simultaneous localization and
mapping (SLAM) is carried out. The VSLAM system builds a
map from camera images and simultaneously extracts features
from the images used for localization [10]. The second class
of systems utilizes computer vision methods to estimate the
location with the help of images in well-known environments.
In this specific field of indoor positioning, Hile et. al [11] use
edge detection for counting doors and derive the position from
a map matching step. However, they report problems with the
concealed doorsteps and larger rooms with furniture. Kawaji
et. al [12] use omni-directional indoor images along with a
SIFT variant called PCA-SIFT [13] to find the position. The
algorithm works well inside of large rooms, but the accuracy
depends on the density of panoramic images since only image
recognition and no position correction scheme is applied.

In this paper another method of indoor positioning is pro-
posed using a smartphone camera which is simpler to calibrate
as panoramic images are not needed and which allow for
position correction using a novel flexible distance estimation
scheme. By using a database of images taken with mobile
phones, the system is easily extendable to user-contributed
calibration (e.g., by including the images taken by users
into the database). Moreover such a growing database easily
adapts to smaller changes in the environment. Furthermore,
the feedback of the actual database image which is found
during matching allows for high confidence in the quality of
the service.

C. MoVIPS - Mobile Visual Indoor Positioning System

Our proposed system, the Mobile Visual Indoor Positioning
System (MoVIPS), is based on a distributed architecture. A

mobile application is used to take images or record a video
(i.e., a continuous sequence of low resolution images) of the
surroundings. Each image is uploaded to a server component
which compares the image with a database of correctly located
and oriented images. These were taken from the surroundings
in an initial calibration step. The mobile application has been
implemented as an Android application and is capable of
performing the SURF transformation or uploading images to
a server. For easier evaluation and estimation of configuration
parameters, our testbed usually does not analyze the image
on the phone, but transfers the complete image to the server
instead.

MoVIPS supports three modes: The first mode or photo
mode is used for precise positioning. A high resolution image
is taken and sent to the server where the SURF feature
descriptors are extracted. These are compared to the features
of every image in the candidate set from the database using
the method described in [1] applied in both directions. The
criteria for choosing the best image out of the database is then
as follows: Take the two images which result in the best and
second best rating with respect to the total count of matches in
both directions. From these two choices select the one with the
smallest difference in the number of matches in the respective
directions. The reason for this is that images with few features
tend to have a small difference in the number of features
while the number of feature matches is a general measure
for the probability of a correct recognition. At this point,
the server component has found the most probable image
along with its interest points and the reference image from the
database. As the position, where the reference image has been
taken, usually differs from the position, where the actual image
has been taken, a geometric position correction scheme was
implemented. As depicted in Figure 1b, the distance d between
two images of the same object taken from different distances
to the object is proportional to the ratio of the distance between
those points in the image.

d = α
a

b
, α constant describing camera field of view



The constant parameter α describes the field of view of
the camera and can be calculated from the field of view
or simply calibrated from two images with known distance
to each other. While comparing images, no two points are
known that definitely match correctly. Hence, the system relies
on the calculation of the respective ratio for each pair of
matching points. In Figure 2b it can be seen that the average
of these values tends to overestimate the distance while the
harmonic mean has the same tendency to underestimate the
result. Hence, the average of both values is used as the ratio
value for distance estimation. Relative errors for the three cases
(harmonic mean, average and the combination of harmonic
mean and average) are depicted in Figure 3. This results in a
distance estimation which is used to push back the position of
the image along its stored orientation to get the real position.

In the second mode or video mode (averaging) and in the
third mode or video mode (voting) a low resolution video is
continuously taken and the frames are sent to the server. Since
the video mode is much more error prone due to the lower
resolution and motion blur, an enhanced positioning method
is utilized. The features of each incoming frame are extracted,
matched and the position is corrected in the same way as
in the photo mode. To reduce the impact of matching with
a wrong image an additional correction scheme is applied.
Instead of returning a position for every frame, the video mode
(averaging) returns the average of the estimated positions of
all frames within a sliding window as the position of the
target. The video mode (voting) utilizes also a sliding window,
but returns the position of the database image which has
the highest number of matches within the sliding window of
frames.

Finally the corrected position estimation and the matched
image from the database are downloaded to the mobile phone
and the location and orientation of the phone are displayed
on a map. Figure 1a shows screenshots of the prototype.
Additionally a WLAN positioning system was implemented to
reduce the number of images to be considered (the candidate
set) from the database. However, the description of this system
is outside the scope of the paper.

III. RESULTS

The results from our prototype implementation of MoVIPS
include a detailed evaluation of the position corrections
schema as well as empirical results concerning the position
accuracy.

The SURF algorithm allows influencing the number of
features by setting a threshold value indicating how distin-
guishable a feature point inside an image has to be. For lower
thresholds, more points are reported as interest points, but the
number of wrong matches will increase. High threshold values
could miss important features resulting in no recognition
at all. In our setting, the mobile application shall perform
the SURF transformation locally and hence the number of
features is proportional to the communication cost. Moreover
the complexity of the matching procedure is quadratic in the
number of features. From our experiments with a smartphone
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Fig. 3. Relative Error of Distance Estimation

camera, a threshold value of 0.0004 for the incoming and
the reference images led to optimal results with respect to
performance and precision.

For the correction of the position using the distance estima-
tion, the camera field of view is calibrated. The quality of the
resulting distance estimation is evaluated against a synthetic
set of images to reduce the impact of noise and quality on the
evaluation. The results are depicted in Figure 2b and 3. The
main source of errors in this case is the fact, that the exact
distance between two points is not known due to possible
wrong matches and therefore one has to rely on the mean
values of the ratios between pairs of matches in both images.

Furthermore, the system is evaluated with respect to
the position accuracy at a university building. An initial
database modeling a long corridor with high self-similarity
has been constructed by taking 68 images (with a resolution
of 2560x1920) in a regular pattern and storing the position
and orientation along with them. The initial calibration took
approximately 10 minutes including taking the pictures and
storing them. Another 5 minutes were needed to compute the
database of image features. The calibration process is time
consuming, but only needs to be repeated locally in the case
of serious changes in the visual environment.

A floor plan and an image of this corridor is depicted in
Figure 1a. The positions and orientations of the evaluation
images are depicted in Figure 2a.

The storage cost of the images and the database on the
server depends on the resolutions of the camera and the
threshold value of the SURF transformation. With a resolution
of 2560x1920 for the images and a threshold of 0.0004 for the
SURF algorithm the database of feature points was 32.2MB
in size and all images added to 134.3MB.

In a series of experiments we estimated the accuracy of
our positioning system in three modes: In the first mode,
stationary pictures were taken at 17 reference positions once
with a smartphone camera with a resolution of 2560x1920.
In the second and third mode, images were extracted from a
live video-stream with a resolution of 640x480. In the second
mode, the average of the positions induced from the frames
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Fig. 4. The influence of overlaying the images with black boxes of the specified fraction of the image

TABLE I
THREE PERCENTILES OF THE CUMULATIVE DISTRIBUTION FUNCTION

(CDF) OF THE POSITION ERROR

System 25% [m] 50% [m] 75% [m]
Photo Mode (Stationary) 0.28 0.68 1.25
Video Mode (Averaging) 2.39 3.88 4.4
Video Mode (Voting) 1.0 2.85 4.4
RADAR 1.92 2.94 4.69

of a sliding window of approximately 15 frames (i.e., in 500
ms intervalls) was selected and used for positioning with the
stationary algorithm. In the third mode, the position of the
image which is induced most often from the individual frames
is taken. Table I shows the position error of three percentiles
for those three modes.

As is to be expected, the positioning quality of both video
modes is worse than that of the stationary mode due to lower
resolution, encoding artifacts and motion blur.

Previous research on indoor localization using images uses
the image recognition performance as the quality measure. As
this does not give any insight in the usability of the system
with respect to the accuracy, we decided to compare our results
with the accuracy of RADAR [7], which is given in meters.
They report results with a median position error of 2.94m and a
worst-case distance around 23m. Our testbed installation using
the 17 test images resulted in a median position error of 0.68m
in the photo mode (see Table I). However, as the position does
not continuously depend on the image, the worst-case position
error can be arbitrary high. The reason for this is the fact that
two images which are very far from each other could match.
A countermeasure would be to use a coarse WLAN position
for the database reduction resulting in an upper bound for the
error. It is worth noting that the system is able to report a
high-quality orientation value which does not depend on the
magnetic environment nor on the pose of the phone and hence
allows for augmenting a navigation application with arrows on
the screen. Moreover the system is easy to tune. The pairwise
checking of all images in the database can show places with a
high similarity. They can be enhanced by additional paintings

or furnishing.
Investigating the database in more detail, we performed a

one-against-all cross-validation in the following manner: To
test the internal ambiguity of the dataset, we estimated the
position of each calibration photo with our algorithms. This
was done twice: Once against the complete database including
the specific image and once using only the other images as the
database.

Using the algorithm with the calibration images showed
good performance as expected. Almost all (97%) images
were recognized correctly. The maximal position error due
to matching with the wrong image was 10m. The influence of
selecting the wrong image on the total error of positioning is
73%. The maximal positing error due to a wrong distance
estimation is 2.8m. Nevertheless the average total error of
0.28m can be neglected. However, this experiment indicates
that some quality analysis of the content of the image database
and a preselection of possible images using a coarse WLAN
positioning can be of great help. Though the maximal errors
of WLAN positioning and our approach are comparable it is
unlikely that they will occur in parallel. Hence, a combination
of both approaches could gain a lot.

Omitting the test image from the database showed, that
70% of the images matched with another image and hence
led to a position estimate. The other 30% did not match with
any other image and hence revealed no position. The position
error for the cases, where a position has been returned has an
average of 4.71m. This average is considerably better than the
average distance between images, which is 5.38m. Hence, the
algorithm selected neighboring images in many cases.

Furthermore the effect of partially concealed feature points,
if parts of an image are hidden behind persons or other
nonstationary objects, is analyzed. To investigate the effect of
objects overlaying parts of the image, we created a test-set by
blacking out a random rectangular area inside each calibration
image covering a specified fraction of the total area. These
images were then used to infer positions and led to the results
depicted in Figure 4 and Figure 5.

Figure 5 shows the average error and the standard deviation
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in meters using images with an overlay. As can be seen, the
influence can be neglected. The average error is always below
one meter and the standard deviation is high. This is due to
the fact that again most of the images were correctly matched
and returned a nearly correct position whereas some images
were mapped to completely different places. The left diagram
in Figure 4 shows the number of feature matches between the
obscured image and the selected database image. The number
drops with increasing overlay area, but the influence is not
really strong (see the right diagram in Figure 4). The success
rate of the positioning system that is the fraction of images
which were detected correctly keeps above 70%, though it
shows a tendency to drop with increasing overlay area. This
behavior was to be expected, because the number of features
in the images with overlay is still sufficiently high.

IV. CONCLUSION AND FUTURE WORK

In this paper we presented MoVIPS, an indoor positioning
system based on a camera phone which is independent from
infrastructure. MoVIPS utilizes the SURF algorithm to extract
feature points from images taken with a mobile phone’s
camera and matches those feature points to a database of
feature points from images of the surrounding environment.
The system offers three modes for location estimation: In
the first mode, the system is able to match a single picture
with the images of the database and returns a high accuracy
position estimate and the estimated orientation of the user.
In the second and third mode a low resolution video-stream is
analyzed and utilized for the location estimation for continuous
positioning and tracking. However, the accuracy drops due to
the low resolution and motion blur.

MoVIPS offers a high degree of accuracy and precision. The
median position error in the first mode was 0.68m in a test
environment inside a corridor of a university building. How-
ever, the worst-case position error is unpredictable, because
two images which are very far from each other could match.
We propose to use MoVIPS together with a coarse WLAN
positioning to introduce an upper bound for the positioning
error and reduce the candidate set of database images. In

the third mode, where a voting algorithm is applied on a
sliding window of frames from the video-stream for position
estimation, the median position error was 2.85m.

To create a clear picture of functionality and stability, we
did not include any spatial or temporal information into the
positioning method. It is obvious that the elapsed time from
and the position of the last position fix can help to reduce
the candidate set of database images much more efficient
and completely independent from infrastructure (e.g, by in-
cluding movement models). Moreover we will investigate in
future work whether the image recognition technology can
exploit specialties of indoor images and reduce the set of
feature points by removing misleading features which do not
contribute to positioning (e.g., features that match on many
database images with the corresponding positions near each
other). We are currently working on mechanisms for automat-
ically reporting problematic areas for this indoor positioning
technology to the system operator by cross-checking database
images for similarity. This feature could be used together with
a user-generated self-calibrating database of images.
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