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ABSTRACT
The prominence of systems for automatic person identifica-
tion has risen increasingly during the past years. One bio-
metric technique for unintrusive identification is gait recog-
nition which offers the possibility to recognize and identify
movement patterns of persons from some distance away. In
former work, gait recognition is mainly achieved with cam-
era systems. In this paper, we present an approach for
gait recognition based on Microsoft Kinect, a peripheral for
the gaming console XBOX 360, with an integrated depth
sensor alowing for skeleton detection and tracking in real-
time. We evaluate a number of body features together with
steplength and speed, their relevance for person identifica-
tion, and present the results of an empirical evaluation of
our system, where we were able to accomplish a success rate
of more than 90% with nine test persons.

Categories and Subject Descriptors
I.5.2 [Pattern Recognition]: Design Methodology—Clas-
sifier design and evaluation, feature evaluation and selection
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1. INTRODUCTION
Systems facilitating robust, automatic identification of per-
sons have gained increasing acceptance during the recent
years [19]. Systems for automatic identification play a de-
cisive role in surveillance scenarios (e.g., monitoring high
security areas like banks or airports). Biometric techniques
use characteristic physiological and behavioral specifics of
different persons for identification. Examples for such tech-
niques are the recognition of iris, face, fingerprint, gait, or
the handwriting. Gait recognition is a relatively new (ac-
cording to Jain et al. [8] actually the most recent) biometric
technique. Using gait as a biometric gained increasing atten-

tion during the past years, since it offers many advantages
compared to other biometrics [21, 10, 19, 4]. Considering
marker-free systems, (i.e., no sensors or other devices are
placed on the subject being identified), gait recognition is
an unintrusive technique, meaning that no physical contact
between subject and measurement device is necessary. In
marker-free gait recognition, person identification is usually
executed by analyzing video sequence recordings. Allowing
for marker-free person identification is one of the key ad-
vantages of using gait as a biometric [19]. In contrast to
systems using for example the iris or the fingerprint of a
person as biometrics, identification by gait does neither re-
quire the cooperation nor the attention of the subject. These
properties are particularly important in the aforementioned
surveillance scenarios where subject cooperation can not be
expected and the subject’s awareness is possibly not desired
at all. Another advantage of this biometric technique is the
fact that identification can be performed on a distance and
that gait is hard to hide or to imitate.
Microsoft Kinect is a peripheral for the XBox 360 gaming
console, enabling players to control games with body motion
and gestures without additional input devices. To this end
Kinect enables skeleton-detection and -tracking of people in
realtime by an integrated depth camera. Using an SDK pro-
vided by Microsoft, the Kinect sensor can be connected with
a personal computer and its datastreams can then be used
in own applications.
Existing gait recognition approaches mostly use standard
video cameras for capturing and recording the movement of
walking persons. Here, the main difficulty lies in the extrac-
tion of characteristic features for identification. The chal-
lenges of existing gait recognition approaches and the possi-
bilities Kinect offers lead to the assumption that the problem
of gait recognition could be simplified using the Kinect sen-
sor. Using a prototypic implementation of a gait recognition
system, we evaluate the possibilities of gait recognition us-
ing Kinect. Using a simple set of features and testing three
different classifiers, we observed promising results concern-
ing person recognition, especially when using a Naive Bayes
classifier.
The paper is structured as follows: In Section 2, we give a
short overview over related work. We then introduce our
Kinect based gait recognition approach in Section 3. In Sec-
tion 4, we present the results we achieve with the prototyp-
ical gait recognition system. Section 5 concludes this paper
with a discussion of our results and possible improvements



in future work.

2. RELATED WORK
Gait recognition research was motivated by the early psycho-
physiological studies of Johansson [2]. Using moving light
displays (MLD), light points attached to the body, Johans-
son showed that people are able to recognize human motion
solely by the movement of the MLDs [9]. The biomechanic
studies of Perry et al. [16], Murray [12] and Winter [22] led
to the assumption that gait is a characteristic and possibly
individual trait of a person.
Gait recognition is a pattern recognition problem. Most of
the existing gait recognition approaches rely on an analysis
of the binary silhouette of walking persons for identification
[11, 13]. Existing approaches can be divided into model-
based and model-free approaches. Model-based approaches
try to model the human body and its motion. An often
used model is the stick-figure model where the human body
is represented by sticks and joints [14]. The model is fit-
ted to every image of the walking sequence and its parame-
ters (angle velocities, trajectories of joints, limb lengths) are
used as features for classification. Therefore, model-based
approaches are basically viewpoint and scale invariant [21].
The drawbacks of the model-based approach are the diffi-
culties in model construction, model fitting and parameter
extraction. Model fitting, e.g., finding extremities and joints
in (often low-quality) video sequences, is particularly chal-
lenging since the subsequent parameter calculations often
require high computational efforts [20, 11, 19, 21].
According to Liu et al. [10] the first gait recognition ap-
proach was developed by Nyogi und Adelson [15]: The out-
line of the subject is used to control a simple stick-figure
model. The angles of thighs and lower legs are extracted and
used as feature for classification with a Nearest Neighbor al-
gorithm. Bobick und Johnson [3] also present a model-based
approach. Using simple activity-specific parameters (height,
torso length, leg length and step length) measured in the
double-support phase1 of the gait cycle, they achieve promis-
ing results. BenAbdelkader et al. [1] present a similar ap-
proach, but also use dynamic features such as the change in
apparent height of the subject and its step frequency, achiev-
ing better results than Bobick and Johnson. In model-free
approaches gait is characterized by the spatio-temporal pat-
terns generated by the (binary) silhouette of the walking per-
sons [1]. Here, gait is solely characterized by the appearance
and movement of the silhouette. The advantage of model-
free approaches over model-based approaches is their often
easier implementation and lesser computational complexity
[19, 21]. Despite their conceptual simplicity, model-free ap-
proaches are able to achieve solid recognition rates and are
therefore prevalent in literature. The major drawback of
these approaches is their susceptibility to any changes of the
silhouette, e.g. by clothing, carrying of objects and occlu-
sions. Phillips et al. [17, 18] present a model-free approach
where they extract bonary silhouettes from the walking sub-
ject which are then scaled to a uniform size. Classification
is then achieved by a image comparison between database-
and test-silhouettes.

1the phase of the gait cycle where both feet are maximally
apart

3. SKELETON-BASED GAIT RECOGNITION
WITH KINECT

We propose a model-based approach for gait recognition
based on the skeleton provided by Mircosoft Kinect. As
said before, Kinect provides a high quality skeletal model
of up to two users in front of the Kinect sensor in a Carte-
sian coordinate system. We decided to use this skeletal data
for recognition and did not use the depth- and color-images
directly.

Our system consists of three components: The first compo-
nent records the skeletal information offered by Kinect which
is then processed by the second component for feature ex-
traction. Finally, we use the machine learning framework
WEKA [5] to identify a person on the basis of previously
recorded training data (see Figure 1).

3.1 Features
The Kinect SDK offers the detection and tracking of 20 dif-
ferent skeletal points, from head over hips to the feet. Using
these points, we define thirteen biometric features for the
identification of a person: The height, the length of legs,
torso, both lower legs, both thighs, both upper arms, both
forearms, the steplength, and the speed. While the first
eleven features are static, i.e., cannot be changed on purpose,
the last two features may depend on the situation. Neverthe-
less, when unaware of identification attempts, these features
may be an additional characteristic for a human being. The
features are evaluated with respect to relevance for classifi-
cation in Section 4 and are to some extent independent of
clothing. Using those high-level features, our approach is
similar to those of Bobick und Johnson [3] and BenAbdelka-
der et al. [1].

3.2 Classifiers
We evaluate the performance of our choice of features with
the help of three different classifiers: 1R, a C4.5 decision
tree and a Naive Bayes classifier.
1R generates a classification rule based upon a single fea-
ture in the training data. All patterns in the training data
are then classified by the value of this feature. Despite its
simplicity, 1R often yields good results in diverse scenarios,
as evaluated in [7]. We use the 1R classifier to evaluate the
general difficulty of our classification task.
The C4.5 algorithm in general generates a decision tree in
which inner nodes represent binary tests on a feature value
and leaf nodes represent classes. Classification of a new in-
stance is done by following the path along the tree as it is
given by the feature values and assigning the class of the leaf
node finally reached. In every step of the tree generation,
the feature yielding the highest information gain is selected
as a test feature which essentially means, that the algorithm
tries to find a test such that the resulting classification tasks
along both branches is as simple as possible [6]. A decision
tree can generally be used to find some ordering of impor-
tance of features, as important features are typically used
early inside a tree generated using the information gain cri-
terion.
The Naive Bayes classifier is a probabilistic classifier based
on the Bayes’ law. It is called naive because it assumes that
the features are statistically independent, meaning that the
values of one feature are not affected by the values of other



Figure 1: schematic of our prototypic gait implementation

features. Though this independence assumption is obviously
violated in gait recognition, the Naive Bayes classifier can
still yield good results in practice.

4. EXPERIMENTAL EVALUATION
Before describing the experiment and our results in detail,
we present the results of a short field study of Kinect’s accu-
racy concerning the chosen static features in an ideal setting.
For this experiment, we recoded 20 short video sequences of
a person standing still and facing the Kinect. The standard
deviation for the description of each feature was less than
2cm which we consider sufficiently accurate for gait recog-
nition.

Figure 2: Experimental setup

To evaluate the relevance of each feature for the identifica-
tion task, we carried out the following experiment: nine per-
sons had to walk from right to left in front of the Kinect sen-
sor as depicted in Figure 2. They were told to walk in their
common gait at their normal speed. Each person walked
through the field of view, while the Kinect recorded a se-
quence of frames capturing his side view. For each person,
the experiment was carried out eight times. Unfortunately,
the Kinect skeleton recognition was only successful for eight
testusers. For one person the Kinect was only able to recog-

nize a skeleton in three out of the eight testruns. Thus, the
experiment yielded 67 labeled feature vectors, which were
used for training and testing of the classifiers. Note that
the standard deviation of the length of each static feature
was with less than 3cm comparable to the ideal setting. The
standard deviation of steplength was 5cm and was 7cm con-
cerning the speed.

Using all features in a 7-fold cross-validation led already to
quite good classification results: 1R chose the feature aver-
age height for his single test and was already able to obtain
a success rate of 62.7%. C4.5 yielded a 76.1% success rate,
while Naive Bayes had the best success rate with 85.1%.
However, C4.5 did not include all features, but ignored the
dynamic features as well as all limbs except the left upper
arm. So a set F4 of the four features height, length of legs,
length of torso, and length of the left upper arm were suf-
ficient to create a decision tree for the full classification of
our testset. When utilizing Naive Bayes solely with these
features, a success rate of 91.0% could be achieved.

Finally, we trained the classifiers with two other sets of fea-
tures. The first set F7 contains all static features which
are not in F4, while the second set Fd consists of only the
dynamic features steplength and speed. With F7, Bayes
yielded 81.1% success rate, with Fd 55.2%, which is promis-
ingly better than randomness indicating that these features
are valuable though they have been ruled out by the other
features. Still, a system which can measure these features
has a good chance of being able to correctly distinguish be-
tween people. All success rates (including those of the other
classifiers for F7 and Fd) are depicted in Table 1.

Classifier All Features F4 F7 Fd

1R 62.7% 62.7% 43.3% 25.4%
C4.5 76.1% 76.1% 68.7% 55.2%
Naive Bayes 85.1% 91.0% 81.1% 55.2%

Table 1: Success rate of classifiers based on different
feature sets using 7-fold cross-validation

These results show the feasibility of person identification
based on gait recognition with Kinect. Furthermore, we can
deduce some recommendations for gait recognition based on



limbs, speed and steplength: Even if the length of various
limbs is closely connected with each other, the proportions
might vary for different persons. This can be deduced by
the fact that there is a gain in the success rate from 1R to
C4.5 and an even larger gain for Naive Bayes although the
latter assumes an independence of all features. For a small
set of persons, our proposed features seem to be sufficient
for identification, however, the approach is not suitable for
identification of individuals among crowds, since the length
of multiple limbs would have to be extracted correctly.

5. CONCLUSION AND FUTURE WORK
In this paper, we presented a model based approach to gait
recognition based on Microsoft Kinect. We use 13 biometric
features such as the height, the length of limbs, and the
steplength which are computed from the skeleton frames
generated by Kinect. Based on testdata from 9 different per-
sons, the three basic classifiers Naive Bayes, 1R, and C4.5
were trained and evaluated concerning the success rate of
their classification. Based on the features used of the deci-
sion tree C4.5, we found out that only four features, namely
height, length of legs, length of torso, and length of the
left upper arm, were sufficient to correctly identify a per-
son in 91% of all cases using the complete video from the
specific experiment and the Naive Bayes classifier. Classi-
fication based solely on steplength and speed still yielded
55.2% success rate using either Naive Bayes or the decision
tree.

We believe that our results from gait recognition with Kinect
are promising and show that reliable discrimination of indi-
viduals in a small set of persons is possible. However, a
larger experimental setup should provide more insight into
the variations of body parameters. Especially in applica-
tion scenarios with large numbers of people, tracking and
classifying the trajectory of certain limbs such as hand and
feet could add to the accuracy of the system. Moreover, a
combination with other identification systems such as facial
recognition could add to the dependability of such a system.
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