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Abstract— This paper investigates a complication of the
classical Traveling Salesman Problem, which arises due to
multiple points with functional equivalence. While the classical
Traveling Salesman Problem tries to find a shortest tour visiting
each point in a set exactly once, we consider the challenge
of finding the shortest tour visiting each point of a given set
exactly once and exactly one additional point out of a different
set of equivalent places. The insertion of a gas station to a
traveling salesman problem provides an example. With this
paper, we investigate and analyze different algorithms to solve
this complex problem by reducing it to the solution of a set of
classic Traveling Salesman Problems. Furthermore, we provide
an efficient way to trade off between the size of the set of
traditional problems still to be solved and the expected error
of the algorithm.

I. INTRODUCTION

The Traveling Salesman Problem (TSP) might be the best
studied problem in combinatorial optimization. The main
problem consists of a traveling salesman finding the shortest
sequence of ways to reach each city of a given set of cities
exactly once. Many applications lead to Euclidian instances,
where the vertices are a subset of Rn and the length of
the edges is given by the norm of Rn. Interest in the
Traveling Salesman Problem arises from several areas of
research: First of all, it is an NP-hard problem [9]. Hence,
finding a polynomial time solution to this problem is of great
general interest showing P = NP , even though few actually
believe in the possibility of such a solution. A well-known
approximation for the Euclidian TSP (actually a metric TSP
would suffice for this algorithm) is Christofides’ Algorithm
with O(n3) running time and an error bound of 3/2 [4].

Application areas where Traveling Salesman Problems
arise are vast. For example, efficient routing of a robot arm
drilling a set of holes is a commonly cited instance, task
planning and navigation are other domains.

Additionally, several constrained or otherwise more com-
plex variants to the basic problem arise from applications.
For example, a partition of a set of vertices into several
convex neighborhoods results in the problem of finding a
shortest tour visiting one arbitrary vertex from each neigh-
borhood exactly once [7]. Some further algorithms to this
problem can be found in [6], [5].

The variant we consider in this paper arises from a large-
scale indoor navigation system at Munich airport [10], where
the set of points of interest is created from a video conference
between a user and a callcenter, and many categories of

equivalent places exist (toilets, shops, restaurants, ...). This
problem was solved by a genetic algorithm considering only
the complexities arising from the indoor setting [11]. The
question of how to select the right place to insert into a tour
from a set of equivalent places still remained open.

Additional to the given scenario, where our main interest
into the problem originated from, several other scenarios of
application are possible:

Nowadays, for electro mobility applications the charging
stations are still rare and the range of electric cars is small.
Hence, it can be of great interest to find the best refilling
possibiltiy for a given tour visiting several places. This
scenario might also add constraints to the original problem
such as that the refilling takes a given amount of time and
has to fit to the overall plan (for example rests).

Another application arises from mobile robotics. Assume
a set of mobile robots, which have a specific sensing task
given by a set of places, where the sensor readings have to be
taken. Assume furthermore, that the mobile robots have the
possibility to reload their batteries. This might be at specific
fixed equivalent places (charging station, wind, solar energy).
In addition, these robots might be able to interact with each
other giving a new (dynamic) set of equivalent places of
possible interaction. This might be useful, when a distributed
consensus algorithm is used needing a specific amount and
type of interaction.

With this paper we construct an algorithm, which is able
to find exactly one equivalent point to insert into a tour
connecting a set of vertices V ⊆ R2.

The rest of this paper is organized as follows. In the
following Section we formally introduce the problem and
some notation. In Section III we discuss the problem and
give some baseline algorithms for solving it. Section III-
D describes the main algorithm of this paper. Section IV
evaluates the algorithm on different types of datasets. Section
V concludes the paper and gives hints on future work.

II. PROBLEM STATEMENT

Let G be a complete, Euclidian, undirected graph with
vertices V ⊂ R2. A subset P ⊆ V defines the points
of interest and another disjoint subset Q ⊆ V defines the
equivalent places. A tour is given as an ordered sequence of
vertices from V containing exactly one vertex from Q and
all vertices from P exactly once. The length of such a tour
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T = (vi)i=0...k is given by

len(T ) = len ((vi)i=0...k) =
k∑

i=0

||vi+1 − vi||,

where vk+1 = v0 for the last summand representing the
way back. The problem is now to find the tour with shortest
length.

III. ALGORITHMIC IDEAS

A. Exhaustive Search

The most basic idea to solve the given problem is the
following: For each q ∈ Q we construct Gq = P ∪ {q}
and solve this TSP to the optimal solution Opt(Gq). From
the set of solutions {Opt(Gq)q∈Q}, we select the best
one minq∈Q(len(Opt(Gq))). This algorithm is simple and
correct. It always finds the best solution. The main drawback
of this algorithm is the exhaustive running time in cases
where many equivalent places are available. Assuming the
solution of a TSP with a fixed number k + 1 of vertices (k
vertices from P and one vertex from Q) to take a constant
time tk, we result with a time consumption |Q|tk increasing
linearily with the size of the set of equivalent places Q.

From these considerations the question whether there is
some area containing equivalent places which can be left out
of calculation arises naturally. Considering only very basic
geometric calculations, there are not too many choices. As a
first step, we should look for a geometric shape C defined by
the set P for which we believe, that many solutions to TSPs
lie in. Then we can use this shape to split R2 = C

∐
(R2�C)

and first try to solve the problem inside the limited region
C ∩ Q. This splitting will of course be used only for the
set of equivalent places, as there is no chance to remove
vertices from the set P as all points in P have to be part of
the solution. The most simple yet efficient idea is to use a
circle. All possible tours for the basic TSP given by P remain
inside the bounding circle of the set P . We will use exactly
such a circle C centered at the centroid of the vertices in P
using the minimal radius including all points from P to split
the given problem.

As a first consideration, it is easy to see, that there is
no area inside the circle, which can be left out without
considering the geometry of the set Q. Figure 1 shows a
triangle and an arbitrarily positioned equivalent vertex q
inside the circle around P . This vertex can, of course, be part
of an optimal solution (e.g., when no other vertex is available
or other vertices are far away) and can be at any point
inside the circle. Hence, each algorithm has to consider the
complete set of equivalent places lying inside the constructed
circle C ∩Q.

B. Outer Circle Algorithm

This consideration can be turned over into a quite effective
algorithm, which we will call Outer Circle. This algorithm
only considers equivalent points, which lie inside the circle
C = Circ(c,R) given by the centroid c of P with radius R =
max(‖p − c‖). Therefore, we construct the set of problems

Fig. 1. Example showing an arbitrarily positioned equivalent point (♦)
being part of the optimal solution. This shows, that no equivalent point
inside the circle can be left out of consideration.

Gq = P ∪ {q} for all equivalent points q ∈ Q ∩ C, solve
them, and from the set of solutions {Opt(Gq)q∈Q}, we again
select the best one. This algorithm performs fairly well, as
long as at least one equivalent point is inside the circle. In
these situations, the algorithm is able to find a tour and this
tour is often the overall shortest tour. But in cases where there
is no equivalent point inside C, the algorithm will not find
a tour. However, even in cases where there are equivalent
points inside the circle, the optimal solution is not always
found. Figure 2 shows an example, where the Outer Circle
Algorithm does not find the optimal tour due to a good vertex
lying outside the circle, but very near to a vertex from P .
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Fig. 2. Equivalent places (♦), points of interest (•), the circle C and the
optimal tour. The Outer Circle Algorithm would choose the equivalent place
lying inside the circle resulting in a suboptimal solution.

For evaluation purposes, we decided to complete the
Outer Circle Algorithm to always find a tour with a simple
heuristic: If no equivalent point lies inside the circle C, we
include the equivalent point q, which is nearest to the set P .
In this way, the algorithm always finds a tour.

There are also other possibilities to define geometric splits
aside from the given circle. However, we did not find a good
tradeoff between complexity of the geometric object and
usefulness of the split. One idea was to define an extended
neighborhood around the optimal tour in P to efficiently
find deviations. However, this split is only useful when the



optimal solution including one equivalent point actually is
a deviation from the optimal tour in P . In other cases, we
are left with a very complicated complement for which the
test, whether a point lies inside this complement, is of non-
constant complexity (e.g., point in polygon).

C. Extended Circles
Motivated from Figure 2 showing that the optimal solution

is not always lying inside the centroid circle C, the idea of
enlarging the circle quickly arises. We defined two enlarged
circle algorithms. The basic idea is the same: We split the
space into a circle and its complement and complete the
algorithm for cases, where the (enlarged) circle does not
contain equivalent points. Then we only solve the problem
by exhaustive search inside this circle.

We called the first variant Doubled Outer Circle and it
simply enlarges the circle to twice the size of the choice from
the Outer Circle algorithm. This algorithm finds the optimal
tour in much more cases. However, this also increases the
number of equivalent points Q ∩ Circ(c, 2R) resulting in
a possible waste of computation time in cases, where the
optimal solution already resides inside a smaller circle.

Another idea is to incorporate the distribution of equivalent
points in the choice of enlargement. The basic idea of
the Three Sigma Algorithm is, that for equivalent points
with nearly uniform distributions, the enlargement can be
controlled by the standard deviation of the pairwise distances
of the vertices in Q. In other words, we construct the set
D = {‖qi − qj‖} of pairwise distances in Q and take the
associated standard deviation σD and define the splitting
circle by C = Circ(c,R + 3σD). This leads to a more
conservative split than the Doubled Outer Circle Algorithm.

D. Ordered Inclusion Algorithm
From these geomtric splits and motivated by the examples

in Figure 1 and in Figure 2 the following idea is generated:
As we should include the complete circle as defined for the
Outer Circle Algorithm, we start with this. However, the
completion of this algorithm with respect to the problematic
cases now works as follows: We order the remaining set
Q∩ (R2�C) by the distance from the centroid c and denote
this ordering by (qk)k∈N.

For the cases motivated by Figure 2, where a solution is
not found, because a given equivalent vertex is outside C,
we solve the ordered sequence of problems Gk = P ∪ {qk}
until a specific breaking condition is met and use the best
tour already found as the result of the Ordered Inclusion
Algorithm.

For finding an efficient breaking condition, let Tk =
(vi)i=1...n be an optimal tour for the problem Gk. Then we
can construct a tour S for Gk+1 by removing both edges
that are connected to qk and adding two edges connecting
the open spots to qk+1, e.g., we perform a specific 2-opt-
exchange. This gives an example tour S for the problem
Gk+1 such that Opt(Gk+1) ≤ len(S).

Let R denote the maximal distance between two points in
Gk

R = max{||v − w||, v, w ∈ Gk}

and r denote the minimal distance between qk+1 and P

r = min{||qk+1 − p||, p ∈ P}

See Figure 3 for an example of constructing S and the
definitions of R and r.

(a) (b)

qk+1

qx

qk+1

R

r

Fig. 3. One two-opt exchange for the construction of the example S and
the sizes R and r.

As the tour S is constructed from leaving out two edges
and adding two edges, a bound can be given: The tour S is
longer than taking out the two longest possible edges from
Gk and adding the two shortest edges in Gk+1.

len(S) ≥ Opt(Gk)− 2R+ 2r

Considering the sequence Gk of problems and assuming
that from some k on the length of the tours will increase
as the cost of connecting the set P with qk exceeds the
post-optimization capabilites due to changing qk, a breaking
condition can be given by R ≤ r. A geometric motivation is,
that the edges in P will not change much, when the distance
to the considered points in Q is large enough. Because then,
the shortest tour in P will be taken, the edge nearest to
the current point qk will be removed and the tour back
and forth to qk will be added. These considerations are not
correct and there exist counterexamples. Figure 4 shows such
a counterexample situation.
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Fig. 4. Example in which the Ordered Inclusion Algorithm does not find
the optimal tour. It will choose the equivalent point at 10 o’clock instead
the one at 3 o’clock resulting in the optimal tour.

Hence, the algorithm need not find the shortest tour. How-
ever, as we will show in the evaluation, for many problems
this breaking condition gives quite convincing results and
outperforms the other algorithms.



To describe the algorithm completely: First calculate the
centroid (e.g., mean of the coordinates) of the set P . This
step is linear in |P |. Then, we sort the set Q increasing
with the distance from the centroid. For equal distances, an
arbitrary ordering can be used. In these cases, however, all
equivalent points of equal distance to the centroid should be
tried. This can be performed in |Q| log |Q| time. For large
sets Q, however, a spatial subdivision (e.g., a spatial index
tree) should be used, such that the complete set does not
have to be sorted. For the resulting sequence G0, G1, . . .
of problems Gk = P ∪ {qk} we search for the optimal
tour Opt(Gk) using an external TSP solving algorithm. This
usually takes the largest amount of time of the algorithm.
As long as qk is inside the circle, this solution is triggered
always. For qk lying outside the circle, we use the breaking
condition R ≤ r. The algorithm is given in pseudocode in
Algorithm 1. Note, that the choices of R and r are quite
conservative and can be made stronger (e.g., choose R from
the best known solution and not from the last one). However,
this will increase defective breaks for faster expected running
time.

Algorithm 1 Ordered Inclusion Algorithm
Q← sortByDistance(getCentroid(P ), Q)
for q ∈ Q do

R← getLongestEdgeFromLastTour()
r ← getMinDistance(q, P )
if insideOuterCircle(q, P ) ‖ r < R then

Ttmp ← solveTSP (P ∪ q)
T ← (Ttmp < T )?Ttmp : T

else
break;

end if
end for
return T

IV. EVALUATION

The evaluation of our algorithms takes place through
several experiments that can basically be divided into two
categories. In the following sections we explain the two
categories, describe the metrics to evaluate the algorithms
and finally discuss the results. For the solution of the
individual Traveling Salesman Problems, we applied a solver
based on the Held-Karp bound [8], [1].

A. Test Setup

In the first experiment we assume a square area on which a
certain amount of uniformly distributed equivalent points are
placed (Q). On another square area, which is centred within
the area Q, points of interest are also arranged (P ) following
a uniform random distribution. A test series consists of
executing each of the proposed algorithm on 500 random
instances of the problem. Each test series is performed with
different ratios of areas P/Q. The ratio starts with 5% and
is increased with steps of 5% up to 100%.

The assumption, that the amount of equivalent places is
larger than the amount of points of interest and may be
randomly distributed, is based on the fact that this is also
the case in most practical scenarios. As equivalent places are
typically places of general interest, they will be spread out
uniformly to give comparable service quality to the complete
public space. Let the toilets in an airport, the mailboxes in
a city or the gas stations of a region serve as examples.

The second experiment refers to the real distribution of
gas stations in Germany. The base area of this problem is
the territory of Germany, the equivalent places are repre-
sented by three percent of the gas stations as extracted from
OpenStreetMap [3] and the points of interest are large cities.
Two test series will be performed: first, the 20 largest cities
in Germany and second, the 20 largest cities in Bavaria (a
state covering Southern Germany)[2]. Figure 5 shows the test
setup.
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Fig. 5. Gas stations (black ◦), the 20 largest cities in Germany (green 4),
and Bavarias 20 largest cities (blue •). Furthermore, the circle for the Outer
Circle Algorithm are given.

In order to evaluate the algorithms we performed three
experiments of the randomly generated test setup and two
experiments of the gas station test setup. Table I summarizes
the characteristics of the experiments.

TABLE I
SUMMARY OF THE EXPERIMENTS

Problem # P # Q # Iterations
random 30 10 30 500
random 100 10 100 500
random 500 10 500 500
petrol germany 20 389 1
petrol bavaria 20 389 1

B. Metrics for Evaluation
This work focusses on the efficient planning of a route

through a set of points of interest as well as exactly one
equivalent place. This results in two quality characteristics
for the algorithms, that will serve as metrics for our evalua-
tion.



The first metric is related to the amount of equivalent
places to be examined. The less equivalents an algorithm
must consider, the faster a shortest tour visiting the vertices
can be found. With the subsequent evaluation we mea-
sure the average portion of equivalent points that were not
considered by the corresponding algorithm. The higher the
value, the better the algorithm’s performance. In this setting,
the exhaustive search algorithm, in which each individual
equivalent is considered, has a zero improvement.

The second metric refers to the quality of the best tour
found by the respective algorithm. The smaller the sum of
the edge’s costs, the better a tour. As the optimal solution is
known for all problems in the evaluation by the exhaustive
search algorithm, we measure the proportion of the solutions
found whose costs are optimal.

C. Results

The results for the first experiment (random type prob-
lems) are given as pairs of graphs. The left hand graph always
shows the improvement in computational complexity given
by the respective algorithm. The algorithm names have been
abbreviated as follows:

Outer Circle Algorithm (oc), Doubled Outer Circle Al-
gorithm (doc), Three Sigma Algorithm (ts), and Ordered
Inclusion Algorithm (oi).

Figure 6 shows the results for ten points of interest and
thirty equivalent points. The x-axis always shows the share
of the POI’s area in the total area. In general, all algorithms
start off with a high improvement for small shares. With
increasing share, the size of the circle is increasing and hence
the efficiency of the splits is decreasing resulting in a reduced
improvement measure.
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Fig. 6. Reults for a test setup with |P | = 10, |Q| = 30, i = 500

As a higher improvement also increases the probability of
a wrong shortest tour, the right hand graph always shows
the portion of optimal solutions of the different algorithms,
again plotted versus the share of the two areas. In general, the
quality of the algorithms increases as the portion increases.

This is due to the fact, that the splitting circle is getting larger
and hence the algorithms converge to an exhaustive search,
which is always correct.

The main result from Figure 6 is that the Outer Circle
Algorithm has the best running time. However, this algorithm
does not find the best solutions especially for small shares.
Though, in around 90% of the cases, the best solution is
found. The second-fastest algorithm is our proposed Ordered
Inclusion Algorithm. It is clearly slower than the Outer
Circle Algorithm, as this algorithm constitues the first step
of the Ordered Inclusion Algorithm. However, the Ordered
Inclusion Algorithm has a quite acceptable error rate, better
than all proposed algorithms except for the Three Sigma
Algorithm. Unfortunately, the Three Sigma Algorithm has
only a bad improvement with respect to running time and
incorporates a complex initialization step calculating the
standard deviation of all pairs of vertices in Q.
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Fig. 7. Reults for a test setup with |P | = 10, |Q| = 100, i = 500
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Fig. 8. Reults for a test setup with |P | = 10, |Q| = 500, i = 500



Figures 7 and 8 show the same evaluation each time with a
larger amount of equivalent points. The results are basically
comparable to Figure 6, but all algorithms converge faster
to a 100% success rate. This is to be expected, as more
equivalent places simplify the problem in general.

From this random setup, we conclude, that the Ordered
Inclusion Algorithm provides the best overall performance in
terms of a good improvement with respect to computation
time together with a high probability of success.

TABLE II
IMPROVEMENT OF THE ALGORITHMS APPLIED TO THE GAS STATION

SITUATION

Algorithm Germany 3% Bavaria 3%

Exhaustive Search 389 (impr=0.00%) 389 (impr=0.00%)
Outer Circle 367 (impr=5.66%) 99 (impr=74.55%)
Doubled Outer Circle 389 (impr=0.00%) 292 (impr=24.94%)
Three Sigma 389 (impr=0.00%) 267 (impr=31.36%)
Ordered Inclusion 389 (impr=0.00%) 119 (impr=69.41%)

Table II shows the results of a realworld problem situation
motivated by electric mobility. Assuming that 3% of the gas
stations provide electric recharging services, we solved the
problem of visiting the twenty largest cities in Germany and
in Bavaria, respectively, including a visit with one of the
three percent of existing gas stations. In this scenario, the best
tour was found by all algorithms. For the scenario including
complete Germany, only the Outer Circle Algorithm provides
an improvement. Figure 5 shows the reason. The circle defin-
ing the possible cut contains most gas stations and especially
all twenty largest cities. Hence, in most cases nearly all gas
stations have had to be considered. For the case of Bavaria,
in which the set of points of interest covers a significantly
smaller area compared to the area covered by gas stations,
the improvements are in general higher. The best result
was given by the Outer Circle Algorithm. This is a lucky
case, because the Outer Circle Algorithm actually found
the best solution for this problem with an improvement of
nearly 75%. However, the significantly more reliable Ordered
Inclusion Algorithm also provides a significant improvement
of 69%.

As a summary, we propose to use the Ordered Inclusion
Algorithm in all cases. This algorithm provides considerable
reduction of computational complexity while providing very
low error probabilities assuming a uniform distribution of
equivalent places.

V. CONCLUSION AND FUTURE WORK

This paper provides an algorithm reducing the problem of
efficient path planning involving equivalent places to a set
of path planning problems without special places, which can
be solved by various techniques from the literature.

This algorithm showed strength in cases where the points
of interest cover a small area compared to the available
equivalent places and where the equivalent places are well-
distributed. This case arise from application scenarios very

often. Equivalent places in applications can be places where
a specific service is provided. As this service might have to
be provided everywhere with the same service quality, a good
distribution (approximately a uniform one) is to be expected.
Examples are recharging stations for mobile robots, Internet
access facilities, toilets in indoor navigation scenarios or gas
stations outside.

Future work should consider other classes of problems. For
example, many problems might not be Euclidian or might
be constrained, for example, by a minimal (resp. maximal)
distance to be traveled before or after visiting the equivalent
place or a precedence relation. In these cases, the geometric
definition of the splitting is questionable or even impossible.
Another interesting question, though not yet well-motivated
by the given examples, is the case where more than one
equivalent point comes into a planning problem and where
direct edges between vertices from Q can be considered.
Another situation of interest is the case where different
categories of equivalent places have to be considered. This
translates to a collection of sets Qk and problems such as
to include at least one (resp. exactly one) point from each
(resp. only one) of these sets.
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