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Abstract—Due to the rise of mobile computing and smart-
phones, a lot of information about groups has become accessible.
This information shall often be kept secret. Hence distributed
algorithms for privacy-preserving distribution estimation are
needed. Most research currently focuses on privacy in a database,
where a single entity has collected the secret information and pri-
vacy is ensured between query results and the database. In fully
distributed systems such as sensor networks it is often infeasible
to move the data towards a central entity for processing. Instead,
distributed algorithms are needed. With this paper we propose
a fully distributed, privacy-friendly, consensus-based approach.
In our approach all nodes cooperate to generate a sufficiently
random obfuscation of their secret values until the estimated
and obfuscated values of the individual nodes can be safely
published. Then the calculations can be done on this replacement
containing only non-secret values but recovering some aspects
(mean, standard deviation) of the original distribution.

I. INTRODUCTION

Context-aware computing is a key tool in ubiquitous and
mobile computing domains. In ubiquitous computing envi-
ronments and especially in the envisioned Internet-of-Things
(IoT) a multitude of different systems will be able to com-
municate with each other [1]. However, the scale of these
systems will prohibit the central aggregation of data and hence
the intelligence has to move towards the data acquisition
nodes. It is predicted that the number of sensors will grow
quickly [2]. The Internet-of-Things is designed to help users
with their respective tasks. As a consequence of context-
awareness, computers will have access to a massive amount
of private information. Hence, privacy is a prerequisite for
context-awareness. This paper adresses the privacy protection
in a highly connected distributed system (e.g., the Internet of
Things) for the estimation of a probability distribution of some
distributed measurements (sensor readings, values, surveys,
age, etc.).

In cases, where some query over a distributed dataset needs
to be calculated, one has two general choices with respect to
the system architecture. Either all private data is collected in
a trusted third party performing the needed calculations on
the raw data or all data is anonymized before publishing and
calculations are performed on this anonymized data [3].

Many existing solutions like [4]–[7] rely heavily on the
architecture employing a trusted third party (e.g., a statistical
database) collecting information from peers and publishing
some statistical information about the complete database to
untrusted third parties. In consequence, these algorithms pro-
vide differential privacy where the change of a minority of

items in the database does not yield a significant change of
the outcome of allowed queries. From a privacy perspective,
this is a very strong notion of privacy, when the database is
actually a central element. However, in ubiquitous computing
systems data is often generated in a distributed manner by the
nodes of the system. In these situations, a central trusted third
party becomes a single point of failure, single point of attack
and a bottleneck with respect to data flows. In these situations,
a fully distributed privacy-aware architecture is more desirable.

Therefore, we want to provide full privacy and remove the
need of a trusted central entity. This state of mind is caused
by a common mistrust against any centralized service provider
that could arbitrarily gather personalized or sensitive data of
any kind. Moreover, for the next decades we expect the number
of participants in distributed networks to increase beyound
a scale, where a central database computation will quickly
become infeasible. Some approaches to assuring ε-differential
privacy in a distributed setting have been proposed [8], [9].
This approach is also based on adding distributed noise. Our
work differs from their work in that we provide a simpler
analysis of the impact of randomization on the knowledge gain
of an eavesdropper by using Gaussian noise and the standard
error of the mean as a measure for information disclosure.

A. Problem Statement

Assume a distributed system that is requested to estimate
a distribution of numerical values. Of course, the system
could be a distributed database that is queried to aggregate
sensitive data. Also, one could assume a service that addresses
a questionaire to its users where a question requires an answer
in numerical form (e.g., Likert scales). In that case, the service
provider is interested in the overall result of the questionaire
(i.e., the mean value and its standard deviation) while users
want to keep their individual answers private. However, the
remaining question is: How can the peers collaborate to
provide an estimated distribution without privacy invasion?

II. THE CONCEPT

We propose an algorithm that collects answers from all
peers in a privacy-preserving manner. The main idea of this
approach is a collaborative negotiation of distributions between
peers where each peer uses a common error distribution to
protect its input to the algorithm from eavesdropping. A
distribution of all answers is then calculated from each peers
state. As the random influence in this approach is quite high,
the system will slowly converge to a consensus and hence,
after a sufficient number of rounds of perturbation, no node has
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private information and all nodes can take part in a distributed
distribution estimation using for example the algorithm of
Chan [10]. The proposed approach is composed of three steps:

1) Construction of a privacy-preserving overlay network
2) Several rounds of communication and calculations

using this overlay network
3) Distributed or central aggregation of the results

In the first step, the central entity surveying a number of clients
helps in the construction of a random network of high node
degree between the peers. This network is reconstructed for
each round of a fixed number of rounds. In these rounds, some
random collection of data is completed. In the final step, the
distributed and randomly perturbed data is summarized into
the average of all individual inputs. Therefore, the following
sections describe the three steps of the algorithm in more
detail.

A. Construction of the Overlay Network

Before the overlay network is constructed, all peers taking
part in the survey will be connected to a single, central entity,
which is reliable for issuing questions as well as for the
coordination of the distributed consensus system. This central
entity can communicate with all peers. Note that this logically
central entity can still be realized in a highly distributed
manner. The intended overlay network will be a connected
random graph of constant degree m. Consequently, each node
can communicate with exactly m neighbors in a private manner
in each round.

For private communication, the concept of Locagram Ex-
changers is used [11]. This concept is based on coupling
identity to public keys. Each node generates a public key
and registers itself with the platform using this public key.
The central service must provide a platform called exchanger,
where such Locagrams can be stored and retrieved without
any additional authentication. These packages are encrypted
for the target node and accompanied by a public key of the
target as destination address. In such a system, anyone can see
activity (e.g., the fact, that some public key has been addressed
by packets). All other information remains confidential. An
exchanger can be seen as a micro-blogging platform and could
be designed in a way, such that only queries from registered
public keys are allowed and that there is a strong limitation on
the number or speed of answers to queries using exponential
delays, such that one can efficiently make only the platform
itself possesses complete activity information.

The overlay graph is now constructed as follows: Each
node generates an RSA key pair and publishes his public key
on the platform. Each node then downloads all public keys and
locally selects a random peer’s public key. With this public key
and the exchanger, the node can communicate with this peer.
We assume, that the communication will be symmetric and
hence each peer will send an encrypted pairing message to the
selected peer containing the own public key establishing a vir-
tual, symmetric, confidential and authenticated communication
channel between two nodes.

This process is performed in a distributed manner such
that any node tries to collect m peers. Note that the central

exchanger can efficiently limit the number of packets which
can be sent to a given peer identified by its public key.

Interestingly, the central entity posesses enough informa-
tion to calculate connected components of the network and can
be allowed to either couple several randomly selected peers
from different connected components. However, in real appli-
cation scenarios the probability of constructing disconnected
components is quite low depending on the actual values of
the degree m and the number of nodes N and, hence, taking
countermeasures against this unlikely situation is unnecessary.
In total, the nodes have agreed on a random, fully-connected
graph of degree m.

B. Random Perturbation

In general, the algorithm is based on the distribution of
very short samples drawn from several specific distributions
in a fixed number R of rounds.

The first distribution is given by every nodes current
estimation. Every node maintains the current estimated dis-
tributions parameters N1 = N (μE , σE). The estimated mean
μE is initialized with the correct and secret answer μE = μS

and the estimated standard deviation of the current estimation
is initialized to σE = 0.

As we intend to construct a privacy-aware algorithm, we
have to find a way in which each individual can give input
to the algorithm without revealing his own choice. This can
be done by adding a common error distribution (random
noise) by each individual to his own input and communicat-
ing this disturbed input. This motivates the introduction of
a second distribution as a zero mean Gaussian distribution
with arbitrary high standard deviation N2 = N (0, σt). This
standard deviation is reduced to zero during the first half of the
planned rounds. Hence, in the first half of the rounds, a strong
perturbation is applied, while in later rounds no additional
perturbation is applied anymore. Now, if the variation of the
error distribution is large enough and the number of samples
per message is sufficiently small, no one can reveal the actual
value of an individual from a single message. However, for a
multitude of observed messages based on the same value, it
is clear, that the effect of the error distribution reduces over
time. Therefore, the overlay network can be reconstructed in
every round.

These two distributions are used to construct the packets,
which are sent by a single peer in each round. A peer constructs
a packet by sampling a fixed small number k of samples from
sum of the two distributions:

N1 +N2 = N (μE , σE) +N (0, σt)

Note that this sum is preserving the mean. The k values
sampled from this distribution are then sent over the network.
Of course, in the beginning, when μE = μS , the mean of this
sample is the secret value μS . But chosing k small enough and
σt large enough results in the expected error of this mean to
be arbitrarily high.

For a node receiving a packet, the current estimate of this
node is updated as follows: The receiving node takes his own
secret value a fixed number of times l. Out of all received
samples from all previous transmissions, the last β

1−β l samples
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(a) The update and sampling operation for incoming and outgoing packets
performed by each node.
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(b) Slow Information Dissemination and Noise Reduction over Time

Fig. 1. The building blocks of the approach

are taken. This results in a sample containing the true value
with a fraction of 1 − β and the received samples with a
fraction of β. The updated state is then given by estimating
the parameters of this sample. Typically, β will be chosen such
that the influence of incoming packets on the estimation is high
while the secret information is only marginally put into the
distribution. Hence the last received samples will easily contain
samples from different peers. Taking into account the current
received samples from different peers can be motivated by
the result of Agraval that a common, known error distribution
can be reconstructed almost perfectly, when enough samples
of this distribution are collected [12]. As a consequence, an
attacker eavesdropping many packets will eavedrop uncertain
knowledge about a non-constant value containing only partial
secret information depending on the value of β. Figure 1(a)
depicts the two isolated parts of the algorithm: The update
of the estimated distribution from incoming packets and the
generation of outgoing packets. Figure 1(b) shows the slow
distribution of information as controlled by β and the estima-
tion to noise ratio over time. Note that finally, when no noise
is applied, the value of the estimate will randomly differ from
the secret value.

In summary, the overall knowledge over all peers converges
to the true answer while, in contrast to distributed consensus
algorithms like [13], a single peer is prevented from calculating
the correct answer. In certain scenarios like conducting surveys
this is a desirable side-effect, especially, if complete results of
such a survey should not be revealed to an attacker.

C. Aggregation

As the main step of the algorithm is a sufficiently random
procedure assigning completely different values to each node
in a mean-preserving way, the time to convergence is rather

high. Hence, we propose to stop the process after a fixed time
and publish all estimated means μE of the individuals, as
long as they changed enough. The mean of these individual
estimations is then the result of the algorithm. As the random
influence on the current state of all nodes is high, one does
not need a trusted central service and can readily apply a
distributed mean estimation algorithm.

Altogether, we have shown a way to collect the desired
information without enabling a central entity to violate any
user’s privacy. In fact, a user’s privacy is also protected against
other peers of the network as the knowledge of a single peer
does not suffice to disclose the information of any other peer.

III. SIMULATIONS

We conducted several simulations with changing mean and
standard deviation of the target distribution and randomly as-
signed true values to the individual peers. The first observation
is that the final estimate of the algorithm is fairly good taking
into account how strong the individual packets have been
randomly obfuscated. Figure 3 depicts the quality of a series
of simulations with varying means and standard deviations. As
can be clearly seen, the final outcome of the algorithm quite
accurately approaches the optimum f(x) = y.

Figure 2 shows the results of the algorithm over time.
Figure 2(a) shows the standard error of the mean, which is a
measure for the ability to derive a mean from an observation.
A detailed discussion of this measure with respect to privacy
is given in the following section. Figure 2(b) shows the overall
estimated mean over time, which is the result of applying the
aggregation step at each round. What can be clearly seen from
this figure is how the variance of the mean is reducing over
time as a result of reducing the influence of the distortion
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Fig. 2. Standard error of the mean (SEM) scaling and SEM over time

distribution N2 over the rounds. It is worth noting that an
optimal attacker would estimate these values from observing
the communication.

IV. PRIVACY OF DISTRIBUTED CONSENSUS
QUESTIONAIRE

The main concern of this paper is the privacy of the
individual with respect to

• its peers,

• the crowd,

• and a central exchanger.

Therefore, we will enumerate the complete information
flow inside this network. We differentiate between meta-
information and service information. Meta-information shall
be any publicly observable information about network activity
including addressed peers, technical addresses, timestamps.
Service information is limited to the actual algorithmic inputs
and is the main goal of protection.

Meta-information is generated by the system in different
phases. In the first phase, a complete view of the network
node set is constructed by the central collection of public keys.
As the public keys are regenerated for each questionaire, they
do not contain information but are rather random numbers.
The central entity, however, can collect bindings of technical
addresses and public keys. As no service information is ex-
changed unencryptedly, the impact of this meta-information
on user privacy is limited to attacks with external sources
of knowledge, which can never be prevented without a truly
confidential communication system.

Information is generated and communicated only between
up to m random peers. Moreover, this information is perturbed

with pairwise uncorrelated errors drawn from a commonly
used error distribution. As shown by Agrawal and Aggar-
val, this approach gives good privacy gain as long as the
number of observable packets is low [12]. Furthermore, only
in the first round, each node communicates its own secret
information with strong perturbation. In later rounds of the
distributed algorithm, a sample is communicated based on
the values of the neighbors and a merely small portion of
confidential information. Altogether, the systems achievement
can be subsumed as follows: The work of this privacy-friendly
cooperative mean estimation is fully distributed and hence the
system scales arbitrarily as long as the final mean estimation
is also performed in a fully distributed way.

A. Privacy Measurements

For a detailed discussion of the system’s privacy, we first
note, that the mean of early observed packets will be a very
good estimator of the value of an individual. As each individual
starts off with a distribution with his individual value as the
mean and a zero standard deviation and as the distortion has
zero mean the sum of these two distributions has the secret
individual value as the mean and the sum of the variances
as the variance, as the two distributions are independent from
each other.

The quality of deriving the mean out of a finite sample is
given by the standard error of the mean (SEM). The standard
error of the mean is defined to be the standard deviation
of the differences of the true mean and all means that will
occur when a fixed number of n samples are drawn from a
distribution. The standard error of the mean is hence decreasing
with the size of the sample and increasing with the standard
deviation of the distribution. Fortunately, our protocol arranges
the situation that the number of observable samples is small
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Fig. 3. Estimated Means vs. True Means

and the standard deviation of the combined distribution is
large.

The privacy of this approach can be explained by the
following well-known fact: Decreasing the standard error of
the mean by a factor of ten needs the number of samples to
be increased by a factor of hundred.

Note that the proposed protocol does not generate unlimited
samples of the objective distribution (the initial distribution
of a node), as the incoming information is used to drift the
distribution towards the global mean.

From the standard error of the mean one can derive
confidence intervals and can define probabilistic attacks, which
are already successful, when the true value is limited to a
small-enough interval with acceptable probability.

Define a probabilistically successful attack to be an attack
in which with a given fixed error probability p the mean can be
bound to an interval of length at most l. This length can then
be given in terms of the standard error of the mean. Taking the
(1− p)-percentile point z of the standard normal distribution,
we can conclude that with a probability of 1−p the true value
of the observed mean lies inside the interval

[x̄− (z ∗ SEM), x̄+ (z ∗ SEM)]

Figure 4(a) shows a plot of the factors z on the Y-axis and
the probability of error on the X-axis. For a high confidence
of 95% the value is z ≈ 1.96, hence the length can be bound
to an interval of length 3.92 ∗ SEM. For a low confidence of
50% the value is given by z ≈ 0.675 and the interval is bound
to the length 1.35∗SEM. In total, a sufficiently large standard
error of the mean provides arbitrary privacy.

V. PRIVACY RISKS AND ATTACKS

This section gives a detailed view on several possible
attacks against the proposed scheme. It will be clarified what
an attacker would need to know or to do to gain knowledge
of single peer’s private information, to gain knowledge of the
overall result of a survey, or to influence the result of a survey
in a certain way.

The scenario in which an attacker controls every peer is
considered trivial, since then he is able to control the survey
in any way or gain any knowledge of every peer.

A. Eavesdropping

One prevalent form of attacking a distributed system is
eavesdropping messages between peers. In this scenario, an
adversary would try to unveil the secret value of one single
peer or the overall result of a survey.

The distribution an attacker would observe at one point in
time has a mean given by the following formula

μc = βμR + (1− β)μs

where μR stands for the mean value that one peer calculates
from a received distribution and μs for its own secret value.
Meanwhile, β controls the ratio between secret and received
samples a peer would use to re-create a distribution with mean
μc that he then uses to communicate a sample of it to its
neighbors. Hence, revealing a peer’s secret value means to
estimate μs from the samples of the observable distribution
with mean μc.

Estimating μs is nearly impossible as the standard error
of the mean of communicated packets is high. Also, the
more packets an attacker eavesdrops, the higher the observable
variance of the packets, since the mean values μR and μs

will increasingly differ. The only information an attacker
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Fig. 4. Scaling Factors for the standard error of the mean and the result of eavedropping a single nodes estimates

could estimate by continuous observation is the overall result
of a survey. But, the result that could be observed from
eavesdropping only one peer’s communication will not match
the actual result, since that has to be calculated from every
peer’s contribution. Figure 4(b) depicts the estimates μE over
time of a single sensor node in a simulation with 50 nodes, 40
rounds, β = 0.9, and a secret value of the node μS = −11.
While the complete system estimates a final mean value of
10.35, the mean of the single node is quite variable over
time. The scatter points show estimates including the effect of
incoming packets in each round and hence, as there is no time-
synchronization, these are the possible estimated distributions
from which outgoing packets might be generated.

However, if an attacker is able to eavesdrop one peer’s
packets from the first round, a good estimator for the secret
value is given by the sample mean. However, the standard error
of the mean of a sample of length k is given by

SEM =
σ√
k

and for the case of our algorithm σ ≈ σt is large for the early
rounds.

Altogether, an eavesdropper can either observe the correct
mean with a high standard error of the mean in early rounds or
another value randomly influenced from peer data, which only
contains the secret value in a marginal fraction. Hence, the
secret value is never unveiled to eavesdroppers with sufficient
confidence.

B. Isolation Attack

An isolation attack aims solely on unveiling the answer of
one single peer. While this technique promises very accurate
results, it is merely impossible to achieve.

From the definition of μc given above, it is easy to deduce
that the secret value μs can be calculated if μR is known by an
attacker. Meanwhile, isolating a peer means to replace all of its
communication partners controlling all of its communication
and thereby providing him with several known μR. In general,
an attacker creates a distribution with a known mean and sends
it to its victim. The victim responds with a distribution that
integrates its own answer and a perturbation assumed to be
sufficient. But, the attacker is able to extract the perturbation,
since it is exactly the μR he himself provided. The success
of the attack depends on the number of packets an attacker is
able to inject as well as on the number of observed packets
resulting from this influenced distribution.

While this scenario sounds dangerous to any peer’s privacy,
it is ruled out by design. Unless the attacker is able to recreate
the whole survey system architecture, the proposed overlay
network and corresponding enforcement of communication
pairing efficiently inhibits isolation attacks. Especially, the
choice of peers is taken locally from a large list of public keys.
As long as the atacker does not control this list and hence a
majority of the network, the probability is very high, that the
nodes obtain information from non-malicious peers.

C. Influence of a Minority

Influence of a minority on the result of a survey is a critical
question. However, the problem lies outside the scope of the
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Fig. 5. Real-World Survey results for age estimation of a group of radio listeners

actual survey system as long as privacy shall be maintained.
Privacy basically implies anonymity and opens doors for an
atacker to control a multitude of malicious nodes taking part
in the survey. Hence, the survey can be influenced by its
design. It is an interesting research direction to integrate
countermeasures based on techniques such as proof of work,
anomaly detection, captchas or similar anonymous proofs of
being non-malicious.

VI. APPLICATION

A real-world experiment has been conducted with actual
survey data about the age of radio listeners in Bavaria. The sur-
vey consisted of 1761 participants with ages ranging from 10
to 69 years performed in an one-hour interval between 6 a.m.
and 7 a.m.. This survey has been used to initialize the nodes.
The obfuscating distribution was set to N2 = N (0, 600), the
system performed 20 rounds, a packet contained 15 samples,
the informaton control parameter β was set to 0.9 and every
node chose 25 peers per round as destinations. From this
setting, we can conclude for the standard error of the mean
of the first packet

SEM ≥ 600√
15

≈ 154.9

As can be seen from Figure 5, the standard error of
observed packets takes similar behaviour compared to the
simulation results and is rather high compared to the actual
data range of an age survey. This standard error of the mean
effectively renders a possible attacker to be no better than
randomly chosing an average age of 50 years. On the other
hand, after enough perturbation has taken place, the mean
quickly stabilizes. Our proposed algorithm estimates a mean
of 38.886 for a true value of 37.522.

VII. CONCLUSION

With this paper, we have constructed a system for privacy-
friendy estimation of a gaussian distribution with the following
key features: Its privacy is measurable and configurable based
on the standard error of the mean, it can be used to anonymize
the individual secret values in a fully distributed way with
low computational overhead for the individual nodes and this
anonymization is itself distributed The main drawback of
the system at hand is, that the basic communication system
should be a highly small-world communication graph where
sufficiently many random peers can be selected as neigh-
bors. This is concretely realized as a peer-to-peer overlay
network. However, an interesting research direction would be
the analysis of privacy in a more local deployment, where
the nodes can only communicate with a fixed small subset of
the complete communication graph (e.g., nodes that are only
few hops away in a wireless mesh network). This leads to
more complexity in situations, where the secret values are not
distributed randomly over the network neighbours, but have
several clusters coming from social groups (e.g., people of dif-
ferent age form different geographic clusters). Further research
should try to integrate completely distributed algorithms such
as this proposed scheme with more generic systems such as
statistical databases. Overall, a distributed database covering a
specific set of queries in a privacy-preserving manner would
be a perfect match removing the need for the often-applied
trusted third party in application domains, where the massive
amount of data or the energy consumption of communication
prohibits centralization of data.
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