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Abstract—Alternative routes have found many applications in
navigation scenarios. However, alternative routes have only been
introduced recently for the indoor space due to the complexity
of these environments. Furthermore, the number of alternative
routes in buildings can be quite high. With this paper, we propose
to organize sets of alternative routes by employing archetypal
analysis on a feature space representation of routes and show
results in which a set of hundreds of routes between the same
start and end point has been compressed to only a few obviously
different archetypal routes. Additionally, the framework allows
for comparing routes with archetypes and with each other. This
comparison does not reveal spatial similarity alone, but rather a
measure of routes’ similarity representing their inherent semantic
character.

I. INTRODUCTION

Navigation is surely one of the most frequently used
applications with mobile devices. Even for indoor scenarios
there is a constantly growing quantity of use cases. Think
of construction workers that have to inspect several machines
in complex industrial buildings, visitors of unknown premises
like hospitals, museums or airports, and mobile robots in store
houses collecting goods [25].

An extension to the classical wayfinding problem is the
identification of alternative routes. This topic is handled well
for outdoor scenarios like street networks, see for example
the formidable survey of Bast et al. [3]. But there is also
an increasing need for alternative routes in indoor scenarios.
Think, for example, of firefighters needing an alternative to a
given yet blocked route, or a navigation system at an airport
proposing different routes in order to proactively prevent
congestions or as a basis for multi-criteria optimization along
different paths (e.g., types of shops).

Like just stated, there is much literature on the identifi-
cation of alternative routes in street networks [1], [10], [21].
Basically, the algorithms focus on finding routes that differ on
the highways mainly used. Unfortunately, the preconditions
in indoor scenarios are quite different. The main limitation
is the higher degree of freedom of movement as compared
to street networks: a person can walk almost freely inside
the corridors and halls resulting in possible turns not only at
crossroads. The first definition of alternative routes in indoor
scenarios has been given by Werner and Feld [28]. In summary,
they define two routes having the same start and end point as
proper alternatives if they traverse obstacles like walls or pillars
on different sides. See Figure 1 as an example showing four
alternative routes.

Fig. 1. An example showing four alternative routes. However, the dotted
lines can be regarded as variations of the solid route.

The strength of this approach is the simple and clear
definition together with the fact that this idea results in an
equivalence relation. The main drawback is that the definitions
given in [28] quickly lead to rather large sets of alternative
routes in noisy floorplans, since small artefacts like furniture
lead to the identification of alternative routes, even if the routes
just have small variations.

With this paper, we concentrate on the question how to
extract small sets of alternative routes with pairwise sensi-
ble dissimilarity from the set of all given alternative routes
between two points. Note that the following analysis has
been done with alternative routes in mind, but can be applied
to any set of routes, for example when tracking multiple
mobile devices in a building. Therefore, we propose to utilize
archetypal analysis [8] – a statistical method for analyzing
multivariate data sets – in the field of indoor navigation and in
particular as a postprocessing step for the further understanding
of given alternative routes. Given a floorplan and a (large) set
of routes having the same start and end point, the objective is
to find a small subset such that these routes are “pure types”
(called archetypes), i.e. they represent ideal observations the
other data points are combinations of. Now, the selection of
routes will no longer focus only on the geometry or shape
of the route (like the homotopy-based approach of [28]), but
additionally on their particular nature and properties defined
by the archetypes. In summary, we cluster a given set of
routes based on their similarity to extreme examples called
archetypes.

The main contributions of this paper are: (1) The definition
of abstract archetypal routes, realized archetypal routes, and
faithful archetypal routes. (2) The definition of a novel measure
for route similarity, the archetypal distance between routes.
(3) A framework to postprocess a given set of alternative
routes in order to filter, analyze, and interpret them for a better
understanding of the relation between routes and map.

The paper is structured as follows: Section II reviews978-1-4673-8402-5/15/$31.00 c©2015 IEEE



related work in the fields of alternative routes, route similarity,
and archetypal analysis. Section III introduces our concept of
archetypal routes and archetypal distance followed by Section
IV that describes our framework for calculating and analyzing
archetypal routes. We provide a detailed evaluation of our
concepts in Section V and conclude the paper in Section VI.

II. RELATED WORK

This section discusses related work in the fields of alter-
native routes, route similarity, and archetypal analysis.

A. Alternative Routes

Basically, the problem of finding a shortest path between
two points on a map can be modeled as a problem of
wayfinding on a weighted graph. There are several approaches
to solve this problem, with Dijkstra’s algorithm [11] and A*
[17] the most prominent ones.

The task of finding alternative routes in outdoor scenarios,
i.e. on street networks, is discussed quite much in literature
[3]. A notable example is the Penalty algorithm [21] that
iterates between calculating a shortest path and increasing the
corresponding edge weights such that eventually the shortest
path might change. The Plateau approach [1] performs a
forward and backward search in parallel creating candidates
out of the preferably high overlappings of the searches. Finally,
there are algorithms as described in [10] that try to create a set
of multiple Pareto-maximal paths. Pareto-maximal paths with
respect to a set of features are paths that are not dominated by
others which means, that there are no paths that are at least
equally good in all features and strictly better in at least one
feature. Features of a trajectory in this context include length,
time, costs, or number of turns.

Despite the fact that there is an increasing need for proper
alternative routes in indoor scenarios, there is not much work in
this field. Furthermore, the concepts and algorithms focussing
on street networks cannot be mapped unmodified onto indoor
scenarios. The main restraints are that usually there are no
different types of ground floor like highways or small roads,
and there is a much higher degree of freedom since a person
can walk almost freely performing turns not only at crossroads.

The first definition of alternative routes in indoor navigation
scenarios has been given by Werner and Feld [28]. They
propose to use the topological concept of homotopy [4] in
order to differentiate between equivalent and alternative routes.
Basically, two routes having the same start and end point are
regarded as proper alternatives if they traverse an obstacle on
different sides. In a slightly more formal fashion: two routes p
and q are alternative to each other if they are non-homotopic
with respect to each other (p 6' q). This relation can be
approximated (under some simplifications ignoring winding
numbers) by the question, whether the polygon spanned up
contains at least one obstacle:

p 6' q ⇔ polygon(p ∗ q−1) ∩ canvas 6= ∅

with ∗ denoting the concatenation of compatible path segments
and q−1 the inverse path of q. If, however, the routes p and
q are homotopic to each other (p ' q), since they traverse
obstacles in the same manner, the routes are regarded as
equivalent. See [28] for more details on this definition.

B. Route Similarity

The calculation of alternative routes is closely related to
the measurement of distances and similarity between routes:
we would like to have preferably different routes. While it is
very easy to assign a reasonable distance to points in geometry,
it is a surprisingly complex topic when turning to trajectories.
One reason for that is that the set of all routes (e.g., the set
of all continuous maps from [0, 1] into some metric space) is
an infinite-dimensional space of functions leading to infinitely
many reasonable ways of assigning a distance to two such
objects. There is a plethora of algorithms that calculates route
similarity with different strengths and weaknesses with respect
to given requirements, but also in terms of complexity, runtime,
and sensitivity to outlier and sampling rates [27, Chap. 6].

In general, most such distances of trajectories are expressed
as algorithms incorporating the distance of points and the min-
imal distance between points and higher-dimensional objects
such as line segments, trajectories or general point sets.

A family of very simple algorithms tries to represent the
distance of trajectories as a summary over the distances of sup-
porting points, especially for piecewise linear representations.
These include the Closest Pair Distance [7] that calculates the
distance between all points and returns the minimal distance,
and the Sum of Pair Distance [2] that calculates the sum of the
distances of all pairs of points. Both algorithms are prone to
outliers, additionally the latter just works with trajectories hav-
ing the same length. This restriction can, however, be overcome
by inserting samples into both trajectories by interpolation
until both trajectories contain the same number of points. As a
consequence, this distance is not very efficient as the number
of points that might be added is in the order of the length of
both trajectories. In the worst case, for every point of the first
trajectory, a new point in the second trajectory is introduced
and vice versa. As the algorithms of this class are quadratic
in the number of points, this is hardly acceptable.

Another family of algorithms tries to simplify the compari-
son of trajectories by adapting well-known distance approaches
for strings: find common subtrajectories or edit one trajectory
into the other. The method Longest Common Subsequence [26]
originates from speech recognition and gives the length of
the longest common subsequence. The ability to ignore very
distant points makes this algorithm quite robust to noise and
outliers. The Edit Distance on Real Subsequences [6], [22]
counts the number of insert, delete, and replace operations of
points that are needed to transform one trajectory into the other.
Dynamic Time Warping (DTW) is a method that calculates the
distance between two trajectories by minimizing the sum of the
distances of pairs of points over a specific class of matchings
of points. It is also known as the “frog distance” as it is the
shortest distance a frog jumping forth and back between both
sequences having only the choice to jump back to the next
spot or the same spot on each trajectory has to take.

A third family of algorithms is purely motivated from
geometry and reduces the complexity by effectively remov-
ing aspects of the trajectory’s time domain. The Hausdorff
Distance [19] is often used to calculate the similarity of point
sets and it computes the maximum of the minimal distances
between the two trajectories. As such, it only incorporates
the spatial points and their distances and ignores the time



dimension completely. Consequently, it can be very efficient
and useful, but from time to time also misleading. A well-
known refinement of the Hausdorff distance is given by
the Fréchet Distance [15]. This distance is defined as an
optimization over all possible monotonic reparametrizations
(e.g., changing the flow of the time variable, but never the
direction). It is best described as the minimal length of a leash
connecting a dog and his owner while both are moving on
two trajectories, but never backwards. It is noteworthy, that the
optimization problem can be solved efficiently for piecewise
linear trajectories (e.g., polylines) by iteratively solving a
(finite) set of decision problems of whether a leash of a given
length would suffice. While this approach is actually correct,
it is also computationally expensive. Still, the discrete Fréchet
distance, which limits the discussion only to the distances
between points (e.g., find the shortest leash that could connect
all pairs of points in a monotonous walk) has a known and
quite small error bound. This enables the use of the Fréchet
distance for pairwise comparison of trajectories at least for
medium-sized collections of trajectories.

Even though the algorithms just mentioned are used in a
wide variety of use cases, they are not appropriate for our
scenario of alternative routes inside buildings, since they are
– in general – unable to incorporate the underlying floorplan.
However, there were proposed extensions that do involve the
geometry of the map like the Homotopic Fréchet Distance [5],
but those algorithms can not be applied towards analyzing large
sets of routes (such as alternative routes) due to their immense
running time.

C. Archetypal Analysis

Archetypal analysis [8] is a technique for statistical data
analysis. It yields results that are comparable to those of
clustering methods such as k-means clustering [18], for ex-
ample. The goal of clustering is to separate data distributed
over a feature space into useful partitions. There is a host of
clustering algorithms that can achieve this. As an example,
k-means clustering works by extracting medoids centered on
data and aggregating the other data points to those so-called
cluster centers.

Archetypal analysis also separates certain amounts of not
necessarily equally spaced data. As opposed to traditional
clustering methods, archetypal analysis looks for the points
on the outer rim of the data space, approximating the convex
hull of the data. In other words, it searches data points that
are maximally distinct from each other.

The base algorithm as described in [8] and [24] is an
iterative one which alternates between two steps. The goal
is to find an approximation of the convex hull of the data
space using comparatively few points. To that end, a linear
optimization problem has to be solved.

Consider a data set with N observations (in our case
alternative routes) and m attributes (e.g. length, number of
turns, etc.) that is represented by an N × m matrix X . To
extract a given number of k archetypes, the algorithm tries
to find the k × m-dimensional matrix Z by minimizing the
residual sum of squares (RSS)

RSS = ‖X − αZT ‖2 (1)

Thus, matrix X is compared to the product of the N × k-
dimensional coefficient α and the matrix of archetypes Z. ‖·‖2
represents a fitting matrix norm, in this case the L2-norm. With
other words, α is the coefficient matrix needed to generate X
from a given set of archetypes Z.

With the first iteration step the algorithm tries to minimize
Equation (1) considering the constraints

αij ≥ 0 and
k∑

j=1

αij = 1

for i = 1, ..., N . The matrix of archetypes Z is a convex com-
bination of real data points, that means it can be represented
by

Z = XTβ (2)

with β as an N × k-dimensional matrix. With the second
iteration step the algorithm tries to estimate Equation (2)
considering the constraints

βji ≥ 0 and
N∑
i=1

βji = 1

for j = 1, ..., k. In a nutshell: The approach described in [8]
is also known as alternating least square algorithm since it
alternates between calculating the best coefficient α for given
archetypes Z and calculating the best archetypes Z for given
coefficient α.

Archetypal analysis iterates until it finds a minimum. It
always terminates, but does not necessarily find the global
minimum of the RSS (i.e., the best approximation of the
convex hull of the data using k points), instead yielding a
local minimum. Furthermore, there is no universal rule for
the initial determination k, the number of archetypes. One
commonly used approach is the “elbow” criterion, where a
flattening of the screeplot of the RSS indicates a possibly good
value of k. Further literature on details like numerical issues,
stability, computational complexity, robustness, and concrete
applications can be found in [8], [13], [14], [24].

III. ARCHETYPAL ROUTES AND DISTANCE

This section describes our concepts of archetypal routes as
well as archetypal distance.

A. Archetypes of Alternative Routes

Archetypal analysis is about approximating the convex
hull of observations in a multidimensional feature space with
preferably few points. These points that define the approx-
imated convex hull are called archetypes, i.e. they are not
necessarily observed, extreme data points that describe the
given data set well.

Like mentioned in Section II-C, the observations can be
represented as convex combinations of the archetypes, and the
archetypes can be constructed by convex combinations of the
observations. This calculation takes place in the feature space,
i.e. each observation and each archetype will be represented
by a concrete configuration of the feature set.



One of this paper’s main contributions is the definition of
three different archetypal routes: the abstract archetypal route,
the realized archetypal route, and the faithful archetypal route.

Abstract archetypal route: We call a concrete configuration
of a feature set an abstract archetypal route. This point in
the multidimensional feature space is not necessarily observed,
actually it is very rare in our scenario of routes inside buildings.
Note that abstract archetypal routes are equivalent to the
original description of archetypes given in [8]. Figure 3,
that will be explained in Section V-B, shows three abstract
archetypal routes with their concrete feature configurations.

Realized archetypal route: Archetypes (our nomenclature:
abstract archetypal routes) are points in a multidimensional
feature space, that approximate the convex hull around the
data points. The observations are points in this feature space
as well. Thus, we can determine a concrete representative for
each archetype using a certain algorithm, i.e. we “realize” the
archetypes. The realized archetypal routes will then be concrete
observations inside the instance space. With this paper we
propose to use a simple “nearest neighbor” algorithm regarding
the values of the coefficient matrix α. Like described in Section
II-C, archetypal analysis describes each observation using
coefficient matrix α. We now define the realized archetypal
route to be the real observation, for which the coefficients
of the representation as a sum of archetypes (as given by
the matrix α) contains a maximum value with respect to the
appropriate column. See Figure 4 for a representation of the
observations inside the feature space. The point that is the
nearest to an archetype will thus be chosen as the realized
archetypal route.

Faithful archetypal route: We call concrete observations
“faithful archetypal routes” if they have got exactly the same
configuration of the feature set like a calculated abstract
archetypal route. This can be realized archetypal routes with
an appropriate α value of 1, but in the most cases this
will certainly be synthesized data points. The question of
how to create routes having predefined characteristics is very
interesting and surely hard, and will be left open for future
work. These class of faithful archetypal routes is especially
interesting as the error introduced by realizing a given abstract
archetype by a nearest neighbor as described in the previous
section would be zero. With other words: if there exists a
realized archetypal route (a concrete observation) that equals
the abstract archetypal route, then it is also a faithful archetypal
route. Otherwise, the data set does not contain a faithful
archetypal route and it would have to be synthesized.

B. Archetypal Distance

Using archetypal analysis, one can summarize a dataset
by a set of abstract archetypes which essentially are feature
configurations of extreme cases. The feature space allows
for direct calculation of similarities between observations and
archetypes by means of the Euclidean norm of the difference
of features.

Consequently, one can define the archetypal distance be-
tween two trajectories as the distance in feature space inbe-
tween both trajectories. This also results in a distance between
two archetypes and can be used to align embedded archetypes
on various geometries. In order to visualize the results of

an archetypal analysis, it is, for example, possible to form
a distance matrix for the feature vectors of all archetypes and
all real observations and to use multidimensional scaling [9]
in order to embed these points in a way such that similarity
and dissimilarity are preserved as good as possible.

In consequence, one can refine the archetypal distance
to be a Euclidean distance of observations after embedding
observations into a lower-dimensional Euclidean space using,
for example, multi-dimensional scaling techniques. This is es-
pecially interesting, when novel observations, which were not
part of the archetypal analysis, have to be introduced. These
can easily be mapped into this low-dimensional embedding by
means of lateration.

To make the definition of archetypal distance more handy:
If one accepts the realization of archetypal routes to be a set
of routes instead of a single route, one can also realize the
routes using the top x observations or the observations having
appropriate α values greater than a given threshold. This is
exactly what archetypal distance means: The set of realized
archetypal routes have got a small archetypal distance to each
other.

IV. FRAMEWORK FOR CALCULATING ARCHETYPAL
ROUTES

This section describes our framework for calculating
archetypal routes including the employed features that we use
as a proof of concept for our definitions of archetypal routes
and archetypal distance.

A. Concept and Implementation

We have implemented the framework completely in R [20],
a software environment to perform and visualize statistical
calculations.

Input of our algorithm is a floorplan of a building given as a
common bitmap with white pixels representing walkable space
and black pixels denoting obstacles like walls or furniture.

Further input is a “route store” consisting of tupels
< x, y, route id, class id > that where created using the
indoor penalty algorithm proposed in [28]. x and y represent
the coordinates of a point of a route. route id assigns points to
a route while class id assigns a route to an equivalence class
defined using the topological concept of homotopy (see Section
II-A). Two routes having the same class id are homotopic to
each other and can be seen as equivalent, whereas two routes
having different values of class id are non-homotopic to each
other and thus can be regarded as proper alternative routes.

The routes’ features described in the following subsection
are calculated using an own module called “feature extractor”.
This module is implemented solely using simple standard tools
of R or, in the case of DTW, an existing library available via
CRAN [16].

The archetypal analysis by itself is conducted using the
R package “archetypes” [13], also available from CRAN, that
was also used to create most of this paper’s figures.



B. Selected Features

In order to apply archetypal analysis in the context of
trajectory computing and alternative routes, we have to select
a sensible set of features with which the routes can be repre-
sented as a numerical vector. By thorough experimentations,
we found out that the following straigthforward numerical
attributes of complete routes have a sufficient descriptive
power. Still, the list is neither complete nor can be transferred
to any domain or map without inspection. This, however, is
a consequence of the impossibility of sensibly representing
routes by small vectors of real numbers. Thus, the set of
features used in this paper is just a proposal for a well-working
feature set created by very simple means.

A concrete feature is described as a standardized floating
point number representing an aspect of the route, e.g. its length.
For each alternative route the same set of descriptive features
is generated. These features are stored in a m-dimensional
vector. These column vectors constitute the matrix X in the
archetypal analysis (see Section II-C).

Basically, we have identified three groups of features:
features regarding the geometric shape of a route, features re-
garding the relation to the shortest route, and features regarding
the relation to the map.

1) Features regarding the shape:

chull area: The area of the convex hull of all points of the
route.

chull size: The number of points that define the convex
hull of all points of the route.

chull centroid x/y: The x and y coordinates of the cen-
troid of the polygon generated by connecting all points of the
route.

length: The absolute length of the route.

angularsum cancelling/positive: The sum of the values
of all turning angles. Since the routes are given by pixel-wise
coordinates, the turning angles exist in 45 degree steps ranging
from −180 to +180 (cancelling) or from 0 to 360 (positive).

2) Features regarding the shortest route:

relative length: The length of the route divided by the
length of the shortest route.

dtw: This feature calculates the distance of the given route
to the shortest route using the dynamic time warping technique.

3) Features regarding the map:

average/min heat: This feature uses a byproduct that is
generated when calculating the set of alternative routes using
the indoor penalty method described in [28]. The heat in a
specific point on a map is defined as the number of routes
of the penalty run that passed that spot. This heat can be
normalized to a specific range or clipped to a certain interval.
The average heat of a route is therefore the sum of the heat
of each point on the route divided by the route’s length.

V. EVALUATION

This section contains elaborate experiments using different
floorplans and it proceeds along the basic flow of archetypal
analysis together with the discussion of particular phenomena.

A. Experiment Setup

We demonstrate and discuss our results using alternative
routes calculated with four different floorplans. See Table I for
a summary. Map “Office” is a very regular floorplan having
rectangular rooms and corridors. Map “Spa” is a foorplan that
is quite round and has a focus on its center. Map “Doom” is
a simplified version of a map used in a first-person shooter
game, having multiple irregular ways to follow. Finally, map
“White House” is a simplified version of a historical floorplan
of the White House.

TABLE I. SUMMARY OF THE EXPERIMENTS

Map Dimension (Pixel) Routes Classes
Office 1000 x 311 400 23
Spa 500 x 340 400 12
Doom 999 x 796 400 10
White House 529 x 361 400 37

Column Routes shows that we have calculated 400 routes
using the framework proposed in [28] for every map. Like
mentioned before, each route is assigned to an equivalence
class defined by the homotopy relation. Thus, for example,
the 400 routes of scenario “Office” are distributed over 23
homotopy classes (column Classes). Note that the number of
routes and the number of homotopy classes depend on each
other and that there potentially exist even more homotopy
classes. More iterations of the penalty algorithm imply more
routes imply potentially more homotopy classes.

For each map we have conducted multiple run of archetypal
analysis with different values of k ranging from 1 to 10 in order
to find and discuss different numbers of archetypes. We also
repeated each experiment multiple times in order to prevent
local minima. The archetypal analysis always converged and
the results were reproducible.

B. Calculation of Abstract Archetypes

We would like to start the explanation of our framework’s
functioning as well as the evaluation of the results using map
“Office”. Archetypal analysis approximates the convex hull of
the observations; thus, a good way to find the “correct” number
of archetypes k is to inspect the residual sum of squares
(RSS). A flattening of the curve indicates an appropriate value
for k, since the additional archetype does not help in reducing
the approximation error very much. This method is also called
“elbow criterion”, see [12], for example.

Figure 2 shows the RSS for different values of k. It is
obvious that the RSS drops quite well from k = 1 to k = 2
and k = 3. But the difference from k = 3 to k = 4 is just
marginal. Thus, we choose to fix k = 3 and further inspect
the best model (since we have multiple iterations in order to
avoid a local minima).

The best model for k archetypes can be well represented
using barplots that show the feature configurations of the



Fig. 2. Screeplot showing the resulting RSS for different values of k with
map “Office”. There is an “elbow” at k = 3.

Fig. 3. Barplots for k = 3 representing the three abstract archetypal routes
for map “Office”.

archetypes (see Figure 3). These are what we consider the
abstract archetypal routes.

After calculating a set of archetypes, there is the need of
interpreting the results. Like stated before, map “Office” is a
quite regular floorplan with rectangular rooms and corridors.
Archetype A1, shown in the top row of Figure 3, has got
low values for the convex hull’s size (number of points) and
area. That means that a route corresponding to archetype A1 is
straight and strict, and goes more or less in a line-of-sight from
start to goal. The moderate values for the x and y coordinates
of the convex hull’s centroid indicate that the main part of such
a route traverses the map quite centrally. Low values for the
absolute length, the length with respect to the shortest route,

Fig. 4. Simplex plot showing the distances between the archetypes and the
observations for k = 3 with map “Office”.

the values for the angular sum, and the DTW distance to the
shortest route indicate that a route corresponding to archetype
A1 will be short by itself. Archetype A2 (middle row of Figure
3) has got high values for every feature except the heat. This
means, that a corresponding route will be more like a detour;
it is quite long, has got much turns and it traverses the map
in the bottom part (point (0, 0) is in the top-left corner of the
floorplan). Archetype A3 has got high values for every feature,
except quite low values for the convex hull’s centroid and
medium values for the heat. This means that a corresponding
route traverses the map potentially in the upper-left part of the
map and is quite long.

C. Realized Archetypes via Nearest Neighbor

A question that immediately follows is how the observa-
tions fit to the calculated archetypes. As explained in Section
II-C, observations are convex compositions of the different
archetypes (via coefficient matrix α).

Figure 4 shows a simplex plot with the archetypes at the
corners of the triangle as well as the observations together with
their pairwise distances. As one can see, there are observations
that are very near to a concrete archetype. This brings us from
abstract archetypal routes (points in the feature space) to the
realized archetypal routes (concrete observations, thus: routes).
As explained in Section III-A, we now identify the “nearest
neighbor” of an abstract archetypal route with respect to the
corresponding α value, thus we choose a concrete route to
represent the realized archetypal route.

Now we can compare the resulting realized archetypal
routes for k = 3 in Figure 5 with the barplot representation
of the abstract archetypal routes in Figure 3. It is obvious
that the interpretation and the chosen representatives for each
archetype fit quite well. The strict and straight route in black
corresponds to archetype A1, the long route at the bottom part
of the map (red) represents archetype A2 and the green route
A3. This filtering of three routes out of 400 is a first nice
result, since the displayed routes can be regarded as pairwise
different and surely appropriate for the use case of alternative
routes in indoor navigation scenarios.



Fig. 5. Three realized archetypal routes for k = 3 in map “Office” (colored
and bold). The gray routes in the background are the complete set of 400
routes given as input. Note that walls and obstacles are omitted in the figure
for a better inspection.

Fig. 6. Screeplot showing the resulting RSS for different values of k with
map “Spa”.

D. Relative Share vs. “Elbow Criterion”

Many papers in the domain of archetypal analysis propose
to use the “elbow criterion” in combination with the screeplot
of the RSS in order to fix the value for k, the number of
archetypes. So did we with map “Office”. In the course of
our experiments it got evident that the additional focus on the
relative distribution of the values of α may help finding an
appropriate value for k. This section may demonstrate it with
map “Spa”.

Figure 6 shows the screeplot of the RSS for map “Spa”.
It is obvious that there is an “elbow” at k = 2, meaning that
the reduction of the approximation’s error is relatively small
when adding another archetype. Figure 7 shows boxplots of
the distribution of relative shares of the α values in order
to get a second view. The diagram on the left-hand side of
Figure 7 confirms that k = 2 was a good choice: the maximum
values of both archetypes are extremely high (1 and 0.9996,
respectively), and the upper quartile is at a value around 0.7.
But in contrast to the screeplot, k = 3 is also a quite good
choice when looking at the boxplot in the middle part of Figure
7. All three archetypes have got a very high maximum value
(0.9993, 0.9991, and 0.9996, respectively), archetype A1 has
got an upper quartile at 0.64, while the upper quartile for A2
and A3 is around 0.45. The boxplot for k = 4 is quite different.
It is obvious, that the archetypes A2, A3, and A4 are defined
or generated by outliers.

The next step would be to verify these thoughts by having
a look at the realized archetypal routes, see Figure 8.

When describing the two realized archetypal routes for k =
2 (left-hand side of Figure 8) in a nutshell, one can see a very
straight route traversing the lower part of the map and a quite
winding route at the upper part. When choosing k = 3 (Figure
8, middle), there are two routes having the same properties but
additionally a new one traversing the map’s center. Please note
that it is not necessarily the case that two archetypes stay more
or less the same and a new one enters, since solutions are not
nested with varying values of k [23]. The right-hand side of
Figure 8 shows the realized archetypal routes for k = 4. This
result is different than the other two, since we have three routes
A1, A2, and A4 like with the setting k = 3, but additionally
a new archetypal route A3 that is on the first glimpse quite
identical to A4. In fact, the realized archetypal routes for A3
and A4 are homotopic to each other, i.e. they share the same
homotopy class.

The results from above showed that we might get non-
alternative, canonical routes for bigger values of k what led
us to a further idea. Instead of limiting the number of k
one can just react to the multiple appearances of homotopy
classes. With other words: if there are routes having the same
homotopy class but are assigned to different archetypes, choose
the shortest of these routes and remove the other ones.

E. Archetypal Distance

The archetypal distance has been introduced in Section
III-B. Now we would like to show the behavior of routes
that are assigned to a concrete archetype to other routes. In
particular: We expect that routes having a small archetypal
distance to a concrete archetype (and thus, also to each other)
show certain similarities. And at the same time we expect that
routes having a large archetypal distance (they are assigned to
different archetypes) show dissimilarities.

In order to examine this assumption we employed map
“Doom” and created a set of “top routes” with respect to a
certain archetype, i.e. we defined all observations having an
appropriate α value greater than a fixed threshold to be part
of this set. In this evaluation we set the threshold to be 0.8.

Figure 9 clearly shows that the set of “top routes” are
similar to each other and show dissimilarities to the other
archetypes, not only by means of “heading left, middle, right”.
The routes of archetype A1 are very straight and fast routes
that traverse the map on the left-hand side. However, the routes
assigned to archetype A2 are at the left-hand side as well, but
are more winding than the former ones and they traverse the
pillar at the top of the map just at the left-hand side. The routes
of archetype A3 are quite straight and traverse the map at the
right-hand side, while the routes assigned to archetype A4 head
through the center of the map. Note that the set of “top routes”
have different sizes. This shows that different archetypes may
represent the given set of observations different well.

Figure 10 depicts the “top routes” of map “Office” that was
investigated in a previous section. The figure shows clearly that
the set of “top routes” are different to the realized archetypal
routes (see Figure 5), but at the same time quite similar. The
realized archetypal route for archetype A1 (black route in
Figure 5) was described as “the strict one” going virtually
line-of-sight from start to goal. Now, the set of “top routes”
differs from that, since they basically cover the whole map.



(a) k = 2 (b) k = 3 (c) k = 4

Fig. 7. Boxplot showing the distribution of relative shares of the α values for map “Spa”.

(a) k = 2 (b) k = 3 (c) k = 4

Fig. 8. Realized archetypal routes for different values of k in map “Spa” (colored and bold). Like in Figure 5 we plotted the complete set of routes in gray
and omitted walls and obstacles for a better inspection.

(a) Archetype 1 of 4 (b) Archetype 2 of 4 (c) Archetype 3 of 4 (d) Archetype 4 of 4

Fig. 9. “Top routes” for each of the four archetypes in map “Doom”, i.e. the set of routes having an appropriate α value greater than a threshold of 0.8.

But the main characteristic, the strict and straight form, is still
visible. The routes show just few turns. The realized archetypal
route for A2 (red route in Figure 5) was described as winding
and curly, but always following the lower part of the map.
This is basically the same for the set of the “top routes”, just
some small variations were added. The realized route for A3
(green route in Figure 5) was very long and can be described
as a complete detour traversing the top and the bottom part of
the map. Thus, it is a preferably long and winding route. This
is again visible in the set of “top routes”, they show a wide
variety of routes that are preferably long.

F. Homotopy Classes

Finally, we would like to discuss the aggregation power
of the “top routes” regarding the homotopy classes of the
given alternative routes. See Figure 11 showing the realized
archetypal routes for different values of k in the scenario
“White House”.

As with the experiments before, we calculated the set
of “top routes” using a threshold of 0.8 for the α values.

When choosing k = 2, the set of 400 routes gets reduced
to 139 while assigning 87 routes out of 10 homotopy classes
to archetype A1 and 52 routes out of 20 homotopy classes
to archetype A2. When choosing k = 3, we assigned 42
routes out of 8 homotopy classes to archetype A1, 24 routes
out of 7 homotopy classes to archetype A2, and 7 routes
out of 4 homotopy classes to archetype A3. Finally, when
choosing k = 4, we combined 27 routes out of 7 classes
(A1), 4 routes out of 4 classes (A2), 5 routes out of 4
classes (A3), and 29 routes out of 9 classes (A4). Summarized,
the classification considered many routes from many different
homotopy classes.

VI. CONCLUSION

With this paper we proposed to use archetypal analysis – a
statistical method for analyzing multivariate data sets – in the
field of indoor navigation and in particular as a postprocessing
step for the further understanding of given alternative routes.
We defined abstract, realized, and faithful archetypal routes
and also a novel measure for route similarity, namely the



(a) Archetype 1 of 3 (b) Archetype 2 of 3 (c) Archetype 3 of 3

Fig. 10. “Top routes” for each of the three archetypes in map “Office”, i.e. the set of routes having an appropriate α value greater than a threshold of 0.8.

(a) k = 2 (b) k = 3 (c) k = 4

Fig. 11. Realized archetypal routes for different values of k in map “White House” (colored and bold).

archetypal distance between routes. The archetypal distance
helps to investigate given routes not only on the geometry
or the shape, but additionally on the particular nature and
properties defined by the archetypes.

With our implemented framework we have also shown that
a rather simple set of features describing spatial trajectories
is sufficient to postprocess a given set of routes in order to
filter, analyze, and interpret them for a better understanding.
Organizing these sets further allows for implementing complex
multi-criterial optimization applications. We also performed
thorough evaluations using different floorplans and scenarios,
and human inspection on a vast amount of results.

For future work we envision to evaluate more and different
features in this framework including their derivation, product
and the like in order to add or remove certain features.
Furthermore we would like to focus on the question of how to
synthesize faithful archetypal routes. Finally a more detailed
analysis of the archetypal distance is eligible regarding the be-
havior of concrete features from different abstract archetypes.
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