
GISCUP 2015: Notes on Routing with Polygonal
Constraints

Martin Werner
Mobile and Distributed Systems Group

Ludwig-Maximilians University Munich, Munich, Germany
martin.werner@ifi.lmu.de

ABSTRACT
This paper discusses the problem of street network navi-
gation under polygonal constraints from an implementation
perspective. It explains the problem chosen for the 4th ACM
SIGSPATIAL Cup 2015 challenge. In this context, the pa-
per shortly examines the most important choices taken for
one submission to the challenge in the context of related
work. It further highlights the structure of the submission
including an interactive GUI for navigation algorithm re-
search and hopes to trigger additional developments in this
beautiful and fascinating research area.

Categories and Subject Descriptors
G.2.2 [Graph Theory]: Path and Cirquit Problems; F.2.2
[Nonnumerical Algorithms and Problems]: Routing
and Layout

General Terms
Algorithm, Spatial Computing, Routing, Navigation, Con-
straints

Keywords
Location-based Services, Navigation, Routing

1. INTRODUCTION
The routing problem (or shortest path problem) is a fun-

damental problem in graph theory. In this context, the task
is usually to find shortest paths between two vertices of a
graph, between one vertex and all other vertices of a graph
or between all pairs of vertices of a graph.

Especially due to the availability of low-cost and small
GPS receivers and digital road maps, these routing problems
have made it into everyday life. Location-based services,
navigation, and guidance are provided by calculating the
shortest (fastest, most efficient) route between two points
of interest. These instances of graph search problems are

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
SIGSPATIAL’15 GIS CUP , November 03-06, 2015, Bellevue, WA, USA
Copyright 2015 ACM . ISBN 978-1-4503-4048-9/15/11
DOI: http://dx.doi.org/10.1145/2835167.2835170 ...$15.00.

usually formulated in transportation networks in which ver-
tices represent places and edges between vertices represent
roads. While for the general shortest path problem, optimal
and optimal efficient algorithms are known (e.g., A*), the
specific structure and the fact that the graph does change
only very slowly, allow for various techniques increasing the
computational efficiency drastically.

Furthermore, the application area of navigation provides
additional complexities to the problem, most notably con-
straints like turn restrictions and variable travel times pro-
vided by measurement (real time traffic information, RTTI)
or time-of-day (rush hours, traffic jams, etc.). While most
high performance approaches to routing are based on com-
plex and time-consuming pre-computations, dynamic con-
straints can render this complete preprocessing useless for a
specific shortest path query.

Additionally, there are only few (if any!) readable, concise
and efficient implementations of navigation algorithms in
the open source domain. This is one of the reasons, why
I started working on this challenge. I hope to provide a
readable and extendible yet performant implementation to
the community.

The 4th GIS-focused algorithm competition, GISCUP 2015,
co-located with ACM SIGSPATIAL GIS 2015, features a
specific problem of shortest path routing. The question is,
how to quickly calculate a shortest path avoiding dynamic
polygonal constraints. My contribution has made it under
the top three submission and this is an invited paper on this
contribution.

1.1 Problem Statement
As already stated, the problem of this competition was

about street network routing with polygonal constraints.
Concretely, the challenge was set up by providing a dataset
extracted from OpenStreetMap. This set contained roughly
100,000 polygonal lines (linestrings) representing road seg-
ments in a Web Mercator (EPSG:3857) coordinate system
often used in online map services. Additionally, a set of
points is provided representing the turn points interconnect-
ing different roads. Note that roads can cross each other
without a connection at bridges and tunnels. Furthermore,
concrete speed attributes per road segment were given to
facilitate calculating the fastest route.

Problem 1
Given this dataset and a set of polygons, find the fastest and
shortest route, which never enters or crosses the interior (or
boundary) of any of the given polygons.

While this problem is very clear, the solution space is large

This is a preprint of the paper M. Werner, GISCUP 2015: Notes on Routing with Polygonal Constraints, in Proceedings of the 23rd ACM SIGSPATIAL International Conference on Advances
in Geographic Information Systems (ACM SIGSPATIAL 2015), ISBN 978-1-4503-4048-9/15/11 Available at http://dx.doi.org/10.1145/2835167.2835170. For personal use only.

1

as the following Section 2 on related work will show. As an
implementation challenge, the real problem boils down to
a careful and efficient implementation and to choosing the
right perspective on this problem.

2. RELATED WORK
Efficient graph search algorithms are usually based on Di-

jkstra’s algorithm. In this algorithm, a shortest path tree is
expanded. In a widely-used description, the status of each
vertex is managed as a color. White means that the vertex
has not yet been used in the search, gray means, that the
search has seen the vertex but not yet finished, and black
means that a vertex has been fully explored and will be used
in the search never again.

The algorithm of Dijkstra is driven by the idea of starting
with all vertices white, and expanding shortest paths from
already constructed shortest paths in an order defined by
increasing path length. In this situation, the shortest path
is stored by remembering with each vertex the predecessor
on the shortest path to the search start. Additionally, the
length of each shortest path is stored along with the vertex.
A priority queue is used to organize the ordering of expand-
ing shortest paths. A priority queue can usually insert an
object with a specified priority and provide quick access to
and removal of the element with lowest priority. There are
numerous variants with strong impact on the overall perfor-
mance of Dijkstra and its variants, see [1].

This basic algorithm can be extended in various directions
in order to increase routing performance. The most impor-
tant directions are towards exploring

• smaller graphs,

• fewer outgoing edges,

• better ordering of outgoing edges.

A recent overview has been given by Bast et. al in a survey
[1]. For the purpose of this paper, I want to shortly describe
only the most important directions of research each of which
is realized in many variants in literature.

The most classical extension to Dijkstra’s algorithm is
known as A∗ and is based on guiding the search towards
the direction of the goal. In a specific setting (e.g., some
properties of the distances involved), this algorithm is opti-
mal and optimally efficient. “Optimal” in this context means
that the algorithm always finds the shortest path and does
not accept any detours and “optimally efficient” means that
any optimal algorithm has to visit a superset of the vertices
visited by A∗.

However, one can do some of this work in a preprocess-
ing step, often. So it is no fundamental contradiction that
many algorithms are faster than A∗. But all of them have
in common non-trivial preprocessing.

A classical extension based on preprocessing is given by
ALT in which landmarks play a fundamental role. A land-
mark in this context is a specific vertex of the graph such
that the distance to and from this landmark for any other
vertex is precomputed. Let L be a landmark. By triangle
inequality, the following equations are valid:

dfrom L(w) − dfrom L(v) ≤ d(v, w) (1)

dto L(v) − dto L(w) ≤ d(v, w), (2)

where dfrom L is the distance from L and dto L is the distance
to L. Both distances can be precomputed for each landmark
and can be used to estimate the distance to the goal. With
a good distribution of landmarks, these bounds are actually
more useful than the distance calculations of A∗ why this
algoritm can reach astonishing performance. Furthermore,
this algorithm is compatible with increasing edge lengths
due to the fact that the bounds keep valid. More details on
this algorithm and its variants can be found in [5].

Other algorithms try to calculate hierarchies, most no-
tably highway hierarchies [9, 10] and contraction hierarchies
[4, 2]. In these algorithms, the graph search complexity
is reduced by introducing hierarchies of shortcuts in or-
der to have a significantly smaller search space. The main
drawback of this method with respect to the problem state-
ment is that the hierarchy is not automatically compatible
with polygonal constraints and update strategies seem to
be costly and complex. A third approach for speeding up
shortest path calculation is given by edge flags in which the
navigation graph is divided into cells and for each pair of
cells and each edge, a flag maintains whether this is an edge
of any shortest path between the two cells. This approach
essentially needs an all pair shortest path preprocessing be-
tween pairs of cells [7, 6, 8]. With respect to the problem
statement, it is quite hard to update this data structure with
constraints: imagine two cities connected with two bridges
via a river, one in the middle of the city and the other one
far away. All shortest paths will use the near bridge. If a
constraint now affects this bridge, all precomputed informa-
tion is useless and in fact misleading, as all searches will be
guided to the near bridge.

There are many other approaches and a lot of details that
had to be left out in this short paper, but in general update
strategies for the mentioned (and other) speedup techniques
allowing for increasing and decreasing edge weights are an
important and promising research area, today.

3. PROBLEM DISCUSSION
With the mentioned background on speedup strategies for

vehicle routing, let us shortly discuss the problem statement
again, now in the light of all those choices that have to be
made: Dijkstra’s algorithm and its possible optimizations,
especially with respect to the central priority queue, is im-
portant. However, I feel that a reasonable implementation of
the priority queue should be used instead of blowing up the
code complexity for minor improvements. Dijkstra’s algo-
rithm is so simple in implementation, that it makes us avail-
able a ground truth for the numerous programming errors
that might come up when implementing more complicated
algorithms.

The second algorithm which must be implemented is A∗.
This is due to the fact that the shape of the A∗ search space
reveals many problematic instances in which also other al-
gorithms might have problems. For the given dataset, the
bridges have an interesting behavior with respect to A∗.
From a performance perspective, however, a careful imple-
mentation of A∗ was even slightly slower than a run of Dijk-
stra. This is due to the chosen projection in which distance
calculation is non-trivial and due to the very small dataset.

With these two algorithms in place, I chose to avoid com-
plex update strategies for constraints, as the dataset is small
enough to assume that even with a thorough challenge to the
algorithm (e.g., some thousand shortest paths on the same

set of constraints) these updates will not pay off. This left
me with the final choice of implementing landmark search
(ALT) for this challenge. In this way, the preprocessing data
is valid even with constraints in place though the usefulness
is reduced. The elements of ALT are essentially Dijkstra
searches for calculating the landmark distances and a mod-
ified Dijkstra algorithm for calculating the shortest path.

This approach was implemented in a specific way as ex-
plained in the next section and made it under the top three
submissions of the ACM SIGSPATIAL Cup 2015. I want to
emphasize that the used algorithm is in no way better than
all other variants described in the related work section. The
choice is just based on those intuitive observations pointed
out in this section, mainly based on the size and projec-
tion of the dataset and the ratio of route calculations per
constraint set.

4. NOTES ON THE IMPLEMENTATION
As the ACM SIGSPATIAL Cup is an implementation

challenge, I want to take the opportunity to comment on
the framework and implementation aspects of the challenge
as well. The following describes some ideas, which might
be most useful together with the source code, which will be
published as well.

4.1 Data Acquisition and Geometry Support
The dataset was formatted as a set of three relevant ESRI

shapefiles, which were easy to read with shapelib library
[11]. However, due to the numerous shapefiles of the first
epoch of the challenge (the dataset was exchanged once due
to numerous questions with respect to the first variant), this
library was used in conjunction with a code generator cre-
ating a class representing a shapefile as well as the set of its
attributes in C++. Given a shapefile, this class could be
generated, reading the information into a data structure.

In order to manage this data, I used a combination of
boost::geometry and std::vector. In this way, I was able
to keep a dumb memory representation of the original dataset
in memory as well as an equivalent representation allowing
for simple geometric operations. Furthermore, boost::geo-
metry::index::rtree provides a peer-reviewed and quite
performant implementation of the R∗-tree spatial index sup-
porting nearest neighbor as well as range queries and inter-
sections quite easily.

With these choices, it is as easy as using queries like
intersects(poly, road) to check, whether polygons and
roads intersect. Furthermore, and especially with respect to
the developed GUI, one can select nearest roads and vertices
in single lines reading
vertex_rtree.query(nearest(point(x, y), 1), ...);.

This serves as an example why generic programming mat-
ters and how powerful it can become. For all this to work,
no one has prescribed a specific library or data type. One is
still free on everything as long as it supports some resonable
axioms (e.g., some given C++ concepts).

4.2 Graph Search and Routing
For the graph search part, the Boost Graph Library (BGL)

is chosen. Though there are several other libraries, the
choice is based on the availability of bidirectional graphs in
which an adjacency list models incoming as well as outgoing
edges and with the possibility of exchanging the roles of in-
coming and outgoing edges by generic programming. In this

way, one is able to calculate the distances from and to land-
mark nodes with the same algorithm and without additional
complexities due to the constant reverse_graph adapter of
BGL. Finally, I am used to generic programming and the
BGL and can afford those very long and partly unclear er-
ror messages occuring regularly in generic programming.

While implementing the search algorithms, I made use of
an important trick in order to conserve runtime: sometimes,
a graph search algorithm would have to update the priority
of a given vertex in the priority queue. This is a very costly
operation, as it is not easy to find the correct element if
it does not have lowest priority. Instead of updating the
priority queue, one introduces a temporary value for each
vertex in which the priority of the last insertion of the vertex
into the priority queue is stored. In this way, the same
vertex can exist more than once inside the priority queue.
However, after retrieving this element from the queue, one
checks, that it is not outdated by looking at the last priority
value that has been used to insert this element. This trick
is only sensible in application scenarios, where the amount
of multiple entries in the queue keeps reasonable.

4.3 Library Structure
The library was implemented as a header-only library and

the graph search algorithms have actually been exported
into their own files. This allows for having several interfaces:
the benchmark program as required by the challenge, several
debug programs to assess reasons for various behaviors, as
well as a completely decoupled GUI allowing for interactive
search.

4.4 GUI
The GUI has been implemented using dslab [3], which is a

cross-platform data science environment essentially provid-
ing a framework for writing interactive OpenGL applications
across Windows, Linux and Mac. The central implementa-
tion giscup.hpp contains conditional source code in order
to allow for rendering and nearest neighbor search. It is
possible to show the street network, the derived graph, the
constraint set, the search space, data of a specific landmark
and much more. Most notably, it is possible to interactively
paint polygonal constraints which are directly applied and
it is possible to search with respect to time and distance in
this graph.

5. CONCLUSION
With the GISCUP 2015 Challenge on routing under polyg-

onal constraints, the ACM SIGSPATIAL GIS conference is
providing a great incentive for thinking about and imple-
menting shortest path algorithms. My submission was cre-
ated with readable code in mind. Only few tricks regarding
performance have been used and it is great that the opti-
mization system of GNU compilers together with C++11
and boost are able to create sufficiently fast code without
specific, unreadable, non-portable tricks.

The real-world problem of navigation under polygonal con-
straints is, however, not solved. Not by me and most proba-
bly not by other submission to the challenge. This is due to
the fact that real-world deployments would have to handle
routing graphs that are by numbers of magnitudes larger
than the given graph, and constraints that are more com-
plex. In my opinion, the challenge highlighted an impor-
tant, largely unexplored problem of the present by asking

(a) A∗ search space (b) ALT search space

(c) Landmark Data (d) Graph Structure and Roads

Figure 1: Screenshots of the GUI

for submissions regarding a toy problem (small graph, no
turn restrictions) of the same kind.

At this point, I want to acknowledge the hard work of
the organizing committee for this challenge. It is very hard
to create and manage an implementation challenge in such
a complicated domain. Thanks for managing the challenge
with such a large amount of devotion.

I would love to see this topic develop in the next months
and years; my source code will be published to foster quick
exchange on the topic and to facilitate real progress. Let us
join forces after this great challenge in order to provide a
scalable and flexible environment for navigation research!

6. REFERENCES
[1] H. Bast, D. Delling, A. Goldberg,

M. Müller-Hannemann, T. Pajor, P. Sanders,
D. Wagner, and R. F. Werneck. Route planning in
transportation networks. arXiv preprint
arXiv:1504.05140, 2015.

[2] G. V. Batz, D. Delling, P. Sanders, and C. Vetter.
Time-dependent contraction hierarchies. In ALENEX,
volume 9. SIAM, 2009.

[3] DSLAB Data Science Lab. Online, to be published.

[4] R. Geisberger, P. Sanders, D. Schultes, and D. Delling.
Contraction hierarchies: Faster and simpler

hierarchical routing in road networks. In Experimental
Algorithms, pages 319–333. Springer, 2008.

[5] A. V. Goldberg and C. Harrelson. Computing the
shortest path: a∗ search meets graph theory. In
Proceedings of the sixteenth annual ACM-SIAM
symposium on Discrete algorithms, pages 156–165.
Society for Industrial and Applied Mathematics, 2005.

[6] E. Köhler, R. H. Möhring, and H. Schilling.
Acceleration of shortest path and constrained shortest
path computation. In Experimental and Efficient
Algorithms, pages 126–138. Springer, 2005.

[7] U. Lauther. An extremely fast, exact algorithm for
finding shor test paths in static networks with
geographical background. 2004.

[8] R. H. Möhring, H. Schilling, B. Schütz, D. Wagner,
and T. Willhalm. Partitioning graphs to speedup
dijkstra’s algorithm. Journal of Experimental
Algorithmics (JEA), 11:2–8, 2007.

[9] P. Sanders and D. Schultes. Highway hierarchies
hasten exact shortest path queries. In Algorithms–Esa
2005, pages 568–579. Springer, 2005.

[10] P. Sanders and D. Schultes. Engineering highway
hierarchies. In Algorithms–ESA 2006, pages 804–816.
Springer, 2006.

[11] Shapefile C Library. http://shapelib.maptools.org/.

