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Abstract
Similarity search with respect to time series has received much attention from research and
industry in the last decade. Dynamic time warping is one of the most widely used distance
measures in this context. This is due to the simplicity of its definition and the surprising quality
of dynamic time warping for time series classification. However, dynamic time warping is not
well-behaving with respect to many dimensionality reduction techniques as it does not fulfill the
triangle inequality. Additionally, most research on dynamic time warping has been performed
with one-dimensional time series or in multivariate cases of varying dimensions. With this paper,
we propose three extensions to LBRotation for two-dimensional time series (trajectories). We
simplify LBRotation and adapt it to the online and data streaming case and show how to tune
the pruning ratio in similarity search by using presorting strategies based on simple summaries
of trajectories. Finally, we provide a thorough evaluation of these aspects on a large variety of
datasets of spatial trajectories.
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1 Introduction

Dynamic time warping (DTW) is a family of algorithms designed to compare time series
with each other. Though dynamic time warping lacks several important properties such
as the triangle inequality, it has seen a wide adoption in many fields. This might be due
to the very intuitive definition, relatively efficient calculations, and, of course, successful
applications. In the domain of time series classification, each sequence in a set of time series
has an associated class label and the task is to predict class labels on unknown instances
given a labeled training dataset. In this setting, one nearest neighbor using dynamic time
warping with warping constraints calibrated from cross-validation (DTWCV) on the training
set is surprisingly hard to beat [7]. A recent paper of Bagnall et al. confirms this observation
[2]. They evaluate on a large set of datasets and are able to beat DTWCV with one nearest
neighbor, but only with a large ensemble of data transformations. This paper impressively
confirms the importance, effectiveness, and efficiency of dynamic time warping similarity
search in time series classification.
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Nowadays, large datasets of time series are available to evaluate and discuss results on.
However, one-dimensional time series predominate these datasets. With this paper, however,
we want to concentrate on the special area of spatial time series, often called trajectories.
In this area, trajectories are considered as time series in a two-dimensional space. The
two-dimensional space has important characteristics allowing for a novel type of lower bound,
LBRotation, and are very important for practical applications such as tracking, navigation,
and location-based services. With this paper, we evaluate and improve the lower bound
LBRotation proposed by Gong et. al [10] and extend it with efficient presorting strategies for
scalable nearest neighbor search.

More concretely, the main contributions of this paper are as follows:
We show that LBRotation can be calculated more efficiently without least square fitting
and without loss of tightness.
We show that LBRotation can be calculated in a data stream setting.
We define three presorting strategies leading to considerable increase in pruning power.
We provide a thorough evaluation of LBRotation variants and presorting strategies on
datasets of very different characteristics.

The remainder of the paper is structured as follows: Section 2 reviews related work on
dynamic time warping including speedup techniques. In Section 3, we explain how to adapt
the lower bound LBRotation for an online algorithm. Additionally, we introduce presorting
strategies in Section 3.3.

In Section 4, we provide a detailed analysis of four variants of LBRotation on several
datasets and discuss the impact and caveats with presorting strategies for similarity search.
Finally, Section 5 concludes the paper with some hints on possible future work.

2 Related Work

Dynamic time warping is a distance definition which has found wide adoption in various
domains. Historically, dynamic time warping originates in the area of speech recognition [23],
but has soon been used in many other domains including geometric recognition tasks such
as handwriting recognition and signature verification [6], in computer vision [1], in shape
retrieval [18], in biology and medicine [14], pattern recognition [4], and recently similarity
search for spatial trajectories [24].

The simplest way of calculating dynamic time warping by an algorithm is given by
dynamic programming [29]:

δDT W (a1..n, b1..m) =



0, if a and b are both empty,
∞, if only one of a and b is empty,

δ(an, bm) + min


δDT W (a1..n−1, b1..m−1)
δDT W (a1..n−1, b1..m)
δDT W (a1..n, b1..m−1)

(1)

This distance δDT W can be computed in O(mn) time [4] where m and n are the lengths of
the trajectories.

One way to achieve this is by first evaluating a complete distance matrix

Di,j(a1..n, b1..m) = (δ(ai, bj))i=1..n,j=1..m

between all points of the trajectories. Then, the problem of calculating dynamic time warping
is reduced to finding the shortest path through this matrix from the lower left corner to the
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upper right corner using only movements to the right, up or diagonally up and summing up
all the entries in the distance matrix. The sequence of coordinates in this distance matrix
gives the warping path.

Due to its quadratic complexity in time and space for equal-length trajectories this
measure is only applicable to short time series. There are two different approaches to
speeding up dynamic time warping calculation [22]: either one creates additional constraints
on the warping path that allow to only reduce the number of evaluated cells in the distance
matrix [21, 11] or one carefully reduces the size of the input trajectories beforehand. However,
neither of these approaches will be strictly correct as some warping paths cannot be found in
both approaches.

2.1 Lower Bounds
For speeding up similarity search performance under DTW, lower bounds can be used for
pruning candidate trajectories. A lower bound in this context is a function taking two
sequences and calculating a lower bound to their true DTW distance, that is LB(Q,R) ≤
δDT W (Q,R).

The most popular lower bounding measures for dynamic time warping are LBKim [13],
LBYi [29], LBKeogh [12], and LBImproved [15].

Even if there exist multidimensional versions of them like LBMV [20], they have actually
been designed for one dimensional time series. In contrast, Gong et al. propose LBRotation
as a first approach which also takes into account special characteristics of trajectories,
i.e. 2-dimensional time series [10].

The idea of LBRotation is to first divide the query trajectory Q = q1, q2, ..., qn in consecutive
and non-overlapping segments si which are as straight as possible. Then, each segment
is rotated such that it is parallel to the X-axis. By doing so, the area of the bounding
envelopes which are defined as Ui = max(qi−c . . . qi+c) and Li = min(qi−c . . . qi+c), where
c is the global warping constraint, is reduced. With these small envelopes, we get a more
accurate, i.e. greater, lower bound, since the second trajectory R = r1, r2, ..., rn pokes out of
the envelopes more often. Note that the rotation of the points in this trajectory is defined
from the rotation of the matching point candidates in the query. If the candidates hit several
segments, we are free to use the minimum of the resulting numbers.

Then, similar to the construction of LBKeogh, the lower bound LBRotation is defined to be
the sum of the distances d to the segments’ envelopes:

LBRotation(Q,R) =

√√√√ n∑
i=1

min
sj∈Si

d(ri,Env(sj)), (2)

with Si is the set of segments of Q which are hit by the candidates and Env(sj) =
(U1, U2, ..., Um, L1, L2, ..., Lm) the corresponding envelopes.

Figure 1 illustrates this situation: a sinus wave is considered as a two-dimensional spatial
trajectory (i.e., time is moving forward along the trajectory and not along the X-axis). First,
this trajectory is split into linear segments (lower left of Figure 1), then these linear segments
are rotated to become parallel to the X-axis resulting in quite small envelopes (upper right
in Figure 1). Finally, this trajectory is compared to the graph of a cosinus wave. Note that
the points of this graph have to be rotated with the rotations prescribed from the query
rotations. Down right in Figure 1, one sees that the intersection of the query and the rotated
example is quite small leading to efficient pruning. For reference, Figure 2 depicts the same
situation for the multivariate version of LBKeogh.

TIME 2017
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Segmentation

Rotation and 
Envelopes

Rotated Matching

Figure 1 Principles of LBRotation illustrated with a sinus graph.

LBKeogh

Envelope

Figure 2 Envelope of LBKeogh for a sinus graph.

Note, however, that the version of LBRotation as proposed by Gong et al. is an offline
algorithm and cannot be applied in streaming settings. It is based on using the Douglas-
Peucker algorithm [8] for segmenting the query trajectory.

3 Online Similarity Search

In this section, we first present our efficient online solution for LBRotation and show, how
it can be used for k-nearest neighbor search. Then, four presorting strategies based on
extremely simple trajectory summaries for increasing the pruning power when searching
trajectory databases are explained in detail.

3.1 Improvements for Lower Bounds Based on Segment Rotation
Facing the challenge of online similarity search, the current version of LBRotation can not be
used as a lower bound for DTW, since it is not applicable to data streams. Therefore, in
the following, we propose an online version of LBRotation which can be applied for speeding
up online similarity search. Since we do not have access to the complete trajectory when
working with data streams, the segmentation step of LBRotation has to work online, too.
Therefore, we replace Douglas Peucker with the Opening Window Algorithm [9, 33], which
segments the incoming data stream online in subsequences as straight as possible. By doing
this, every time the segmentation algorithm provides a segment, the corresponding rotation
angle and envelope can be computed and recorded. Thanks to the sum in Eq. 2, the lower
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bound can then easily be updated online by computing for the incoming data points the
matching points in the query and summing the minimal distances.

In addition, not only the method for the segmentation step is interchangeable, but also the
rotation angles can be determined in different ways. For our implementation, we decided not
to use least square fitting as suggested by Gong et al., but the arcus tangens of the segment’s
start and end point. This simplification is possible, since the segmentation algorithms are
already supposed to find straight line segments and so the subsequence can be approximated
by the line from the start to the end point. With this simplification, the rotation angle θ is:

θ = − arctan
(

∆y
∆x

)
,

where ∆x = xlast − xstart and ∆y = ylast − ystart with xstart (ystart) are the first x-(y)-
coordinates of the segment and xend (yend) the last x-(y)-coordinates, respectively.

3.2 k-Nearest Neighbor Search
For similarity search applications, especially for k-nearest neighbors, lower bounds can be
used to speed up the process of searching. Therefore, a search by example strategy is
employed: one proceeds with a linear search over the complete dataset remembering the best
result (e.g., nearest neighbor) found so far. For each new element in the linear search, the
lower bound is calculated. If the lower bound is higher than the current nearest neighbor
distance, we can avoid calculating the true distance and prune the element. If, however, the
lower bound is smaller than the current nearest neighbor distance, the true distance must be
computed in order to decide, whether the current element is better than the nearest neighbor
found so far.

In the context of this algorithm, the two metrics pruning ratio and tightness are widely
used to assess the quality of lower bounds.

Tightness is a measure comparing the lower bound with the true distance and we define
it, according to [12], as follows:

T = Value of the Lower Bound
True Value of DTW .

This creates a value between zero and one, the larger, the better. It summarizes how much
the lower bound resembles the true distance. For a tightness of one, the lower bound coincides
with the distance, for a tightness of zero, the lower bound is the trivial lower bound given by
a the constant zero function.

Though tightness is a good measure for comparing different lower bounds, it is not directly
related to search speed. Therefore, a more practicable metric called pruning ratio has been
defined. This measure is based on counting how often the lower bound has successfully
avoided the calculation of the true distance.

Formally, the pruning ratio can be defined as follows:

P = Number of Omitted Elements
Total Number of Elements in the Dataset .

This measure creates a value between zero and one with one representing the best case.
Note that tightness is a quite general measure and only influenced by the dataset and

the lower bound algorithm. The pruning ratio also depends on the best known candidate in
a linear search at a given iteration, hence, on the ordering of the dataset. As an extreme
example, consider the nearest neighbor being the first element to be inspected. Then, the
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lower bound has a higher chance of pruning elements as if the best example is very far away
from the beginning of the linear scan.

We will exploit this fact by proposing some presorting strategies for trajectories in order
to increase the pruning ratio while the tightness keeps constant.

3.3 Presorting Strategies

A central idea of this paper is to increase the pruning ratio by presorting strategies for
two-dimensional time series. Even though very simple summaries of trajectories such as the
centroid of the set of points do not carry much information about trajectory similarity with
respect to DTW distance, they can be used to reorder the dataset or to prepone the analysis
of promising candidates in order to be able to more often use the lower bound for pruning.
Note that we do not want to sort the complete database in order to have the majority of
the linear scan access data in its ordering in memory or on disk. We just prepone a set of
examples, before we enter the classical linear scan.

The main idea is to summarize a complete trajectory (e.g., the sequence of spatial points)
into a single indexable object. For example, we can summarize the point set of a trajectory
by the centroid of the point set. As the centroid maps a trajectory database into a database
of points of the same size, existing efficient point indexing strategies such as R∗-trees can be
used to efficiently retrieve k-nearest neighbors.

The following sections introduce three presorting strategies for trajectory data in the
same framework: first, a single object summary is calculated and then similarity of these
summaries can be used to prepone some examples to increase pruning power. Of course,
many other variants can be easily defined and it depends on the application and datasets
how to choose such a summary.

3.3.1 Presorting Using Centroids

For all datasets, we used the centroid of the points of the given trajectory (i.e., the mean
of the coordinates) as a summary. For increasing pruning ratio, we first looked at a given
number of nearest neighbors in the set of centroids (which is a simple point set to be indexed
for example by an R∗ tree). The idea is that similarity of centroids is a necessary condition
for similarity with respect to DTW: if the centroids are far from each other, the average
distance between points of two trajectories will be large, hence, DTW distance will be large.

3.3.2 Presorting Using the Last Point

Another point-based presorting strategy is given by bringing forward some trajectories whose
end points are near each other. This is especially useful in online scenarios in which similarity
is in any way searched with respect to the immediate past.

3.3.3 Presorting Using the Jaccard distance of Geohash sets

The third presorting strategy is given by encoding every point of every time series using the
Geohash mechanism [30, 19] and considering the Jaccard distance of the involved sets as an
indicator of nearness. This strategy is especially interesting as the Jaccard distance can be
indexed by using Bloom filters in an extremely memory- and time-efficient way [26].
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4 Evaluation

We implemented the lower bounds LBKeogh and four different variants of LBRotation as a
library for the statistical computing environment R using C++1. We appreciate that the
authors of the initial paper on LBRotation provided us with their implementation, which we
used as a reference for reconstructing some details of their approach.

In a preparation step, we preprocess all trajectories of a dataset to contain the same
number of points (see Equation 2). Therefore, we use piecewise linear interpolation (PLI) for
trajectories with fewer points than desired as well as picewise aggregate approximation (PAA)
for trajectories which are too long. Optionally, we independently normalize trajectories by
subtracting the mean and dividing by the standard deviation.

For the segmentation of trajectories, we implement three approaches: the first approach
is, of course, Douglas Peucker simplification with a given threshold. Note that the original
paper prescribed the number of segments to generate. Due to the variations in our datasets,
the approach using a threshold in terms of the distance in the dataset is better. However, we
do not know the number of segments for a given trajectory beforehand. For being able to
process LBRotation in an online manner, we used the Opening Window Algorithm. Though
the Opening Window Algorithm has quadratic complexity, it is often used as a replacement
for Douglas Peucker for the case of data streams [33].

For assessing the orientation of segments, we used the linear models provided by the
R environment with the lm function. As this function rejects to fit lines to sequences of
equal points, we completed the linear model fitting by setting an angle of zero in any case,
where lm rejects the creation of a linear model for a segment. This amounts to not rotating
these segments. This is a minor difference to the original version, which tries to derive an
angle also in numerically unstable situations. Additionally, we argue that the segmentation
algorithm should have already taken care of creating linear segments and just assess the
orientation based on the angle formed by the first and last point of the segments.

Presorting has been implemented by an appropriate index for the given presorting strategy:
An R∗ tree as provided by the boost::geometry::index library for the case of points and
Bloom Aggregated Cell Representations for the case of Jaccard distance of Geohash sets [26].

4.1 Data Sets
We evaluate our approach against the original LBRotation and LBKeogh and use several variants
of segmentation and line fitting algorithms on datasets of varying type.

4.1.1 Geolife GPS Trajectories
The Geolife dataset is a large GPS dataset containing 18,670 GPS trajectories with 24,876,978
points. It contains the trajectories of 178 users in a period of over four years from April 2007
to October 2011. The data is given in WGS84 using latitude and longitude [31, 32].

4.1.2 Character Trajectories
The Character dataset, available from the UCI Machine Learning Repository, contains 2858
trajectories of writing 20 different letters on a digital tablet [16]. Note that the samples
in this dataset are given as the smoothed derivative of location. This makes the letters

1 We plan to publish all the source code via CRAN and on our web pages.
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Figure 3 Tightness of LBKeogh and variants of LBRotation.

independet from the actual pen location on the tablet. For our experiments, we calculate
the cumulative sums of these discrete derivatives and perform the matching of characters on
their actual shape. Note that by this procedure, all characters start at the zero point.

4.1.3 Prague Ego-Shooter Dataset
The Prague Ego-Shooter Dataset is a dataset containing 50 minutes of five players playing
Urban Terror in Capture and Hold Mode on the map Prague (ut4_prague) [25]. In this
game mode, players of two teams start in two different areas and the goal of the game is to
“hold” the flag. The flag is positioned at a third fixed location on the map and the team who
was the last walking over the flag is “holding” the flag. The team scores, who is holding the
flag at specific time points. This map data has a lot of internal structure including the three
locations and other tactically important spots around the map.

The dataset contains 275 trajectories for a total of 244,675 samples of player locations
taken every 50ms. The coordinate system is similar to an orthogonal coordinate system with
a unit of meters.

4.1.4 Roma Taxi Dataset
The Roma Taxi Dataset contains trajectories of 315 taxi drivers working in the center of
Rome [5]. The traces contain the position of the taxis roughly every 7 seconds. The dataset
was acquired with various Android tablets and is given in WGS84 coordinates. Note that
the getAccuracy method of the Android location API has been used to reject positions for
which this API method estimates a precision worse than 20m. In other words, only good
signal situations have been kept. The dataset contains 21,743,005 points.
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Figure 4 A reordering of the San Francisco dataset.

4.1.5 Fastest Paths in San Francisco Dataset

The Fastest Paths in San Francisco dataset is a synthetic dataset we created from a street
network of greater San Francisco area [28]. The street network was extracted from Open-
StreetMap data and used in the ACM SIGSPATIAL GIS Cup 2015 [27]. The dataset
provides the coordinates of nodes in the street network as modelled in the OpenStreetMap
and calculates the fastest way between two random nodes using a weighting based on speed
annotations in OpenStreetMap. It contains 539 trajectories with 136,978 points. Trajectory
length ranges from 4 to 681 with a mean length of 254.1 points per trajectory.

4.2 Experiments

In this section, we present several experiments, we performed on the datasets. First, we
evaluate tightness as a function of the warping constraint. Then, we look into pruning ratio
and presorting.

4.2.1 Tightness

First, we calculate average tightness of five lower bounds: LBKeogh and four version of
LBRotation, namely for Douglas Peucker and Opening Window together with least square
fitting and simple segment fitting. Figure 3 depicts the results for the five datasets Prague,
Roma, San Francisco, Character and Geolife. We conclude that all variants of LBRotation
perform similar, however, we also note that the gain of LBRotation is quite small for Roma
as you can see in Figure 3c. This is to be expected as the trajectories of the Roma dataset
are quite long (2,994 km on average; each trajectory is the complete trace of a Taxi driver
during a month) and similar with each other. Interestingly, the GeoLife dataset shows nearly
identical tightness for both Douglas Peucker variants and significantly better tightness for
the Opening Window algorithm. This is particularly interesting as the Douglas Peucker
algorithm is often used as a reference for segmentation algorithms due to its mathematical
and perceptive quality and this can be seen as a warning that these two properties are not
always deciding.

In summary, we conclude that LBRotation can be calculated more efficiently without loss
of tightness by using the segment start and end points instead of fitting a linear model.
Additionally, we conclude that an online segmentation such as Opening Window is applicable.
We remark, however, that the quality of the segmentation has a severe impact on LBRotation
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Table 1 Pruning Ratio and Speedup.

Dataset Strategy
Average Pruning Ratio

with Strategy
Average Pruning Ratio
with Random Ordering Speedup

San Fransisco A Centroid 0.9925651 0.9849442 2.03
San Fransisco A Geohash-Jaccard 0.8461538 0.8038462 1.27
San Fransisco A Last Point 0.9925373 0.9826493 2.32
San Fransisco B Centroid 0.9944238 0.9830855 3.03
San Fransisco B Geohash-Jaccard 0.9868421 0.9236842 5.8
San Fransisco B Last Point 0.9962687 0.9809701 5.1

Roma Taxi Dataset Centroid 0.4493631 0.4407643 1.02
Roma Taxi Dataset Geohash-Jaccard 0.5306122 0.4938776 1.08
Roma Taxi Dataset Last Point 0.4423567 0.4417197 1.0011
Prague Dataset Centroid 0.9817518 0.970073 1.64
Prague Dataset Last Point 0.9817518 0.9689781 1.7

Character Trajectories Centroid 0.8989899 0.8484848 1.5
Character Trajectories Last Point 0.9292929 0.8565657 2.0

Geolife Dataset Centroid 0.9985719 0.9985438 1.02
Geolife Dataset Geohash-Jaccard 0.998602 0.9984555 1.11
Geolife Dataset Last Point 0.9836735 0.98322 1.03

and that very long trajectories such as those of the Roma dataset degrade the usefulness of
all variants of LBRotation altogether.

4.2.2 Pruning Ratio and Presorting

For evaluating the presorting strategies, we select a query object in each dataset and calculate
ten reorderings of the dataset in which each time the ten nearest-neighbors have been brought
forward.

Figure 4 illustrates this approach for the San Francisco dataset. In this Figure, the
trajectory centroid was used as a presorting strategy and we select the ten nearest neighbors
with respect to the centroids in order to bootstrap similarity search from them (see Figure 4a).
After that, as you can see in Figure 4b, trajectories arrive in the ordering they are stored on
disk in order to reduce the amount of random access to the dataset. In Figure 4c, one can
see the full dataset.

Additionally, we calculate ten fully random orderings of the same dataset. In any case,
the query was removed from the dataset for a more realistic setting.

In general, any of the presorting strategies showed a good increase in pruning power.
Table 1 gives results on the datasets.

For the San Francisco dataset, two queries have been used. One on the continent (San
Francisco A) and one on the island (San Francisco B). The probability of finding a good
example by chance is larger for the island as the dataset contains only a small part of the
continent (see Figure 4). This can be seen in the pruning ratio of random orderings. On
average, it is easier to find a good candidate for the island case. This is to be expected, as
the dataset has a bias towards more trajectories on the island due to the fact that more
graph nodes have been modelled on the island. With respect to the pruning strategies, San
Francisco shows very good centroid and last point performance, but only moderate Geohash
set similarity performance. This is to be expected as the trajectories are shortest paths
and the centroid as well as the last point of a shortest path is a good summary of the path.
Furthermore, the trajectories are relatively short and, hence, the centroid is a good summary
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Figure 5 Centroid Distribution of (a) Prague Ego-Shooter Dataset and (b) Character Trajectories
Dataset.

of the trajectory. Anyways, the tightness of all variants is quite good (only few percents of
the dataset are actually analyzed with full DTW calculations). The speedup illustrates the
number of DTW calculations, that have to be used without presorting. It is calculated as
follows:

Speedup = 1− Pruning Ratio with Presorting
1− Pruning Ratio without Presorting .

With an average speedup of 3.25, the classical approach needs 3.25 times as many DTW
calculations as the presorting algorithms.

The Roma dataset contains long trajectories of taxis driving around the center area of
Rome. Due to the taxi nature of the trajectories, the centroids are not very informative, as
they are inside the center of Rome for all trajectories.

Therefore, the speedup of the point-based strategies is quite poor. The Jaccard distance
of Geohash sets strategy, however, performs better. This is due to the fact that the center
of Rome, which is part of all trajectories, does not contribute to the dissimilarity of two
trajectories and they are indexed by their set of extreme locations (i.e., those Geohash
cells that are not in other trajectories). This results in a considerable speedup. Remember
that this dataset is a hard dataset for lower bounds (see Figure 3c) due to the very long
trajectories traveling around the city. This is expressed by the low general pruning ratio. In
this situation, the speedup of 8% is to be understood relative to the large fraction of roughly
half of the dataset, which has not been pruned. In this way, our pruning strategy prunes a
large absolute number of DTW calculations in comparison to random orderings.

For the Prague Ego-Shooter dataset, the centroid information was quite useful and
well-distributed. We expected this behavior as the game rules let players of both teams start
in two isolated regions and they aim to quickly reach and defend the flag. But as teams can
only score on specific points in time, players tend to look for a safe place on the map and
wait for the right moment for a team attack. Figure 5a depicts the distribution of centroids
on the Prague Ego-Shooter Dataset.
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(a) Centroids (b) Last Point

Figure 6 Geolife Point Summary Distributions.

The Character Trajectories dataset is another example of presorting as a powerful tool if
the summary is carefully selected. Recall that we integrate the Character dataset such that
the shapes of the characters are used (the dataset contains the first derivative of the location
and is often used in this modality). By the integration process, all our character strokes
start at coordinate (0, 0). Hence, the centroid partly covers the shape of the letters. This
leads to a considerable speedup of 1.5 for the centroid strategy. This means, that without
presorting, we would have to calculate 1.5 times as many true DTW as with the simple
presorting strategy. Figure 5b illustrates examples of the centroid behaviour on the character
dataset for all samples of the letters “a”,“p”, and “z”. You can clearly see that the centroids
of those characters form separated clusters.

The Geolife dataset behaves similar to the Roma dataset, however, the pruning power
is much higher. This is due to the fact that the Geolife dataset is split into many smaller
trajectories. Again, and similar to Roma, the centroid does not cover enough information
while the Geohash Jaccard distance is able to ignore the common parts of trajectories and
concentrate on significantly different locations. Figure 6a depicts the distribution of centroids
for this dataset, which is clearly centered on Beijing. Similarly, the distribution of last points
of trajectories is also not very informative as depicted in Figure 6b.

In order to illustrate the power of using Geohash Jaccard distance, we provide an
embedding based on multidimensional scaling (MDS) for a subset of 400 trajectories of
Geolife with respect to the Jaccard distance. In multidimensional scaling, a distance matrix
is given and MDS tries to find a set of points such that the relative distance between points
is preserved [17].

Figure 7 depicts the pairwise Geohash distances embedded into two-dimensional space as
good as possible. Therefore, we employed the SMACOF algorithm minimizing the metric
stress

σ(X) =
∑

i<j≤n

wij(dij(X)− δij)2

between the Geohash distances δij and the Euclidean distances dij(X) in the two-dimensional
embedding X. The weights for the individual terms wij have all been set to one as there is
no uncertainty in the distances in our case. We added some jitter to the plot just to make
the number of identical points visible. You can clearly see that the points are distributed
around the model space without much clustering structure. So this summaries created
from Jaccard distance of Geohash cells actually contain useful information for preponing
candidates explaining the very good presorting power in San Francisco B, Roma, and Geolife.
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Figure 7 Metric Embedding of 400 Geolife trajectories with respect to Jaccard distance of
Geohash sets.

5 Conclusion

With this paper, we have thoroughly evaluated the novel lower bound for dynamic time
warping called LBRotation on several datasets. Additionally, we show that it can be extended
to an online algorithm without severe degradation in performance. Third, we showed that a
presorting strategy with simple summaries of trajectories such as the last point, the centroid,
or the set of visited spatial cells creates better pruning power, sometimes considerably,
sometimes marginally.

The most important distinction in this context is the question, how a trajectory can
be aggregated in a useful way as a single object. One way to do that is calculating some
aggregate. The last point strategy and the centroid strategy are examples for that. The
centroid is clearly an “average” as it can be calculated as the mean of the coordinates. The
last point also describes the average movement, especially, for datasets where all trajectories
start at the same point or are normalized to do so. Another way of presorting is describing
the extreme behavior of a single trajectory compared to others.

We have done so – to some extent – by measuring the dissimilarity of the sets of Geohash
cells each trajectory hits. Future work could include other ways of extracting the most
extreme behavior from trajectories, such as extracting features from the convex hull or
performing archetypal analysis [3]. Additionally, ensembles of summaries can be constructed
and evaluated. However, the most interesting problem in this area would be, how to select
and configure summaries in order to gain the highest pruning power from presorting for
similarity search.
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