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Abstract—Understanding urbanization and planning for the
upcoming changes require detailed knowledge about the places
where people live and work. Thus, knowing the usage of buildings
is inevitable to distinguish between residential and commercial
places. Assessing the usage of buildings from an aerial perspective
alone is challenging and results in unresolveable ambiguities.As
complementary data sources, social media images taken from
ground level allow access to the building façades, as well as
ongoing social activities around the buildings, which are very
valuable information while coming to accessing the building
usages. Towards the fusion of social media images and remote
sensing data for this purpose, in this work we present a method
to assess building usages from social media images taken in their
neighborhood. Using a straight forward next neighbor classifier
for mapping images to buildings and pre-trained networks for
dimensionality reduction we trained a logistic regression classifier
to distinguish between five different building usage classes.
Applied to a study area of Los Angeles metropolitan area, USA,
we obtain an average precision of 0.67. Hence, we show that
social media images can be a valuable additional source to remote
sensing data.

Index Terms—Building Classification, Social Media, Building
Usage, Social Media Image, Complementary Data Source

I. INTRODUCTION

The United Nations estimate that 68 % of the global human
population will live in cities by 2050 [1]. Thus, metropolitan
areas will grow in general and especially informal settlements
will expand. To manage this growth and to develop cities ac-
cordingly, detailed insights into urban dynamics are necessary.
Sustainable urban planning requires detailed morphological
and cartographic information as well as insights about the
population dynamics including population densities and hot
spots.

For the creation of knowledge about the places where people
live, work, and buy everyday necessities remote sensing is a
crucial source of information. However, the aerial view cannot
reveal every detail of urban areas: unresolvable ambiguities
remain, which can only be determined from ground view.

Land-use classification in urban areas on building instance
level is still a challenging task [2]. Buildings of different
functions stand side by side and therefore, estimating their
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Figure 1: Examples of geo-tagged Flickr images

functions using optical satellite images is virtually impossible.
Hence, Workman et al. proposed a unified model for near
and remote sensing by fusing panoramic images from Google
Street View and Bing Maps aerial [3]. For a fine-grained
building instance classification Kang et al. used Google Street
View images with a dedicated heading and sophisticated
filtering [4].

Beyond Google Street View there are several social media
platforms to which their users upload millions of photos every
day. This is an additional and rich source of ground view
imagery with various types of motifs included (cf. Figure
1). These images contain information about locations and
activities of their users and hence bringing spatial and semantic
knowledge together in one context. In this paper, we propose a
framework to estimate building instance functions using plain
geo-tagged social media images not containing any heading
information. We show the effectiveness of our method on a
study size of 8,270 km2 including 2.6 million buildings around
Los Angeles.

II. RELATED WORK

Land-use classification using remote sensing images has
been an active field of research adapting progress from com-
puter vision and pattern recognition rapidly. Traditionally, it
was mainly adopting feature extraction methods like SIFT [5]
with bag-of-words approaches [6].

With the evolution of deep learning methods, new ap-
proaches for dealing with remote sensing images are being
presented [7]. Chen et al. showed how stacked autoencoders
for hierarchical feature extraction can be used for land use
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classification in hyperspectral images [8]. Since labeled data
in remote sensing on deep learning is very scarce, Marmanis
et al. [9] used features extracted from pre-trained networks
on ImageNet [10] to classify aerial images. Beside CNNs,
recurrent neural networks and generative adversarial networks
are also employed for different remote sensing tasks, for
example in [11]–[13].

Parallel to developments on aerial imagery there has been
a lot of research on geo-tagged images from Google Street
View and social networks like Flickr. Leung and Newsam
used a combination of Flickr and the Geograph British Isles
project1 for a binary land coverage classifier. This method
called Proximate Sensing achieved an accuracy of 75 % on
their study area covering the London metropolitan area and
its surroundings.

Gebru et al. used Google Street View images with a deep
learning method to classify car models [14]. These classifi-
cation results were used as a proxy for estimating income,
race, education, and voting patterns in the United States.
Furthermore, Kang et al. used Google Street View images
to classify building usage on single buildings using façade
images. They filtered out all images with occlusions or indoor
scenes and fine-tuned four pre-trained networks to distinguish
between eight usage classes obtained from OSM.

Moreover, hybrid datasets like the Cross-View USA
(CVUSA) including geo-tagged images from Google Street
View and Flickr [15] provide a valuable source of information
for land cover estimation. Using a pre-trained object detec-
tion algorithm, Greenwell et al. presented spatial correlations
between detected objects and land coverage [16].

In contrast to the given related work, we use unstructured
social media imagery from Flickr and do not apply any
filtering of images in order to predict building instance classes.
More concretely, we address the problem of building instance
classification into five classes given by OSM. We solely rely
on unfiltered geo-tagged social media images from Flickr. We
exploit the spatial proximity of images and buildings indicating
a possible semantic relation knowing and expecting that many
images do not directly relate to the given classification task.
Still, we can show that the overall spatial distribution of images
is tightly linked to the building functions.

III. METHODOLOGY

In general, we are going to create a classification system
which can be given a set of images assigning one of the
classes. Therefore, we need several steps: First, we need to
associate the geo-tagged imagery with individual building
instances. Our approach for this aspect is outlined in Section
III-A.

Then, for all images that are sufficiently near to a building,
we extract a visual feature vector from applying a pre-trained
vision network. Concretely, we employ VGG-16 [17] for its
good balance of visual performance and prediction speed. The
extracted feature vectors are then used in a logistic regression

1http://www.geograph.org.uk

setup trying to predict the class of the building a set of
images was associated to. Multiple results stemming from
multiple images are combined by using a voting scheme. This
prediction step is subsumed in Section III-B.

A. Assigning images to buildings

The assignment of an image to a building is based on a
spatial nearest neighbor join. Intuitively, we assume that geo-
tagged images next to the same building share some context
and, therefore, we map each image to the nearest building. An
image can be assigned to only one building, but one building
can have multiple images assigned to it.

More formally: let I be a collection of pairs (i, p), where
i is an image and p is a spatial point representing the
location of the image. Let further B be a collection of pairs
(b, c) of a building polygon b and a class c representing its
usage according to OSM. Then, we perform a spatial nearest
neighbor left join on I×B resulting in a set of tuples (i, c, d)
assigning to each image i the class c of the nearest building
to the image location as well as the distance d between the
building polygon and the image location.

The closer the distance between an image point and a
building polygon the more likely is a semantic relationship.
Therefore, we define a distance threshold dthres discarding
all images, which are assigned to a building that is more than
dthres meters away.

B. Predicting building functions

For all images that have been selected in the previous step
we compute feature vectors, f(i), from a pre-trained network.
For this, we use the VGG-16 architecture [17] trained on
ImageNet [10] and extract the fully connected layers fc1 and
fc2 in front of the prediction layer. The feature vectors obtained
from these layers have 4096 dimensions.

This instantiates a classification problem of mapping one
of these feature vectors to the building class. We decide to
apply a logistic regression classifier trained using the SAGA
optimizer, which is known to work well if the feature space
is high-dimensional, the training data is very small, and the
dataset is large [18]. It applies a certain form of stochastic
gradient decent and it is known to converge very fast and
even for objective functions that are not strictly convex.

The classifier

cli 7→c : i
V GG−16−−−−−−→ fc1

Log. Reg. w. SAGA−−−−−−−−−−→ c

is trained on pairs of images and classes to distinguish
between the different types of usage.

For our final goal, however, we need to assign a class to
each building and we do so by combining the results for all
images assigned to a certain building through majority voting:

clb 7→c : b
lookup images−−−−−−−→ (ik)

cli7→c−−−→ (ck)
maj. vote−−−−−→ c

In this classifier, the first operation extracts all images that
have selected the given building as its nearest neighbor, applies
the image to class classifier, and combines the results selecting
the most frequent class among the results of the image
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Figure 2: Example images from five different usage clusters

to class classifier. To estimate the classifier’s performance
thoroughly, we apply a 10-fold cross-validation to train our
logistic regression classifier.

IV. EVALUATION

First, we give a brief introduction to the Los Angeles
dataset used for training and testing. Then, we show the
results of our methodology starting with assigning the images
to buildings and discussing our classification results with
different parameters in the end.

A. Dataset

Our study area focuses on the Los Angeles metropolitan
area because it has a very dense and convincing building
function assignment in OSM. 2,619,306 building polygons in
this area of 8,270 km2 have a building tag corresponding to
the proposed labeling schema by OSM2. This labeling schema
is clustered into five high level classes: “accommodation”,
“civic”, “commercial”, “religious”, and “other”. Consequently,
these building tags can be mapped to one of the high level
classes. Figure 2 depicts example images for all classes. For
our study area we collected 343,711 public, geo-tagged images
from Flickr.

B. Assigning images to buildings

Since the assignment algorithm maps each image to a
building no matter how far away it is, the distribution of
assignment distances follows a log-normal distribution. There
are many images with a small distance to the next building
and few buildings with a larger distance. Figure 3 shows the
distribution of assignment distances on a log-scale. 56.6 % of
all images are less than 100 m away from the next building,
89.3 % are within a 1,000 m distance threshold. The median
distance is 75.6 m.

Figure 4 depicts the spatial join assignments as lines on a
map of Los Angeles area. As expected, the spatial density of

2https://wiki.openstreetmap.org/wiki/Key:building
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Figure 3: Distribution of Spatial Join Distances

Figure 4: Image assignment distances (color = distance)

geo-tagged images from Flickr is higher around the city center
(about 97 m) as opposed to the rural areas (up to 20,617 m).
These long lines stem from assigning images on the ocean or
from hiking in the mountains to the nearest classified building.

In summary, 343,600 images are assigned to 34,318 build-
ings with proper class labels. Figure 5 shows the distribution of
the number of images assigned to a building and its frequency.
17,029 buildings have a single image assigned to it, 17,298
have more than one image for classification. A fraction of
4,341 buildings has 10 or more images assigned to it.

C. Predicting building functions

First, we present experiments regarding the choice of the
distance threshold dthresh. Figure 6 shows the classification
performance of the framework for choosing both fc1 and fc2,
respectively. The classification performance is measured with
precision, recall, and accuracy as a function of the distance
threshold dthres. Additionally, they depict the relative number
of classified buildings compared to the number of buildings
that have at least one image assigned to it.

Concretely, the fraction of images that are actually being
labeled from the OSM data varies significantly and starts to
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Figure 5: Number of Images per Building (log-log-scale)
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Figure 7: Confusion Matrix. Background color visualizes
column-normalized precision.

stabilize around 100 m with 87.7 % (18.3 % at 10 m, 66.7 %
at 40 m). In addition, increasing the distance does reduce
precision and recall, but not significantly. Note that recall is
measured in relation to the dataset of assigned images, not in
relation to the number of images that would be available. In
addition, we observe that the performance of using fc1 or fc2
is comparable.

In summary, the performance fluctuates around 75 % for
precision, recall, and accuracy and starts to reduce with in-
creasing distance threshold at about 20 m. However, increasing
the distance threshold further increases coverage in the sense
that more buildings get images. Therefore, we propose to
use a threshold of 100 m for this tradeoff. For the final
setting of dthres=100 m, Figure 7 depicts a confusion matrix.
In summary, the most frequent classes accommodation and
commercial show convincing performance of 0.58 and 0.63.
This is a very encouraging performance. In the future, we
envision to use this information for augmenting classification
based on satellite imagery.

V. CONCLUSION AND OUTLOOK

In this study we presented a classifier for predicting building
usage based on spatial proximate social media images. In the
Los Angeles metropolitan area our method is able to classify
87.6 % of all buildings that have at least one image in a
proximity of 100 m with an average precision of 0.68.

For future work, we envision three important directions:
first, use this in a fusion manner together with spatially

accurate yet semantically ambiguous remote sensing imagery.
Second, replace the simple kNN associations with a higher
degree probabilistic spatial association rule such that images
contributes to more than one building. Finally, we envision to
use filtering and motif detection in order to reduce the amount
of misleading images from the classification system.
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