
GloBiMaps – A Probabilistic Data Structure for
In-Memory Processing of Global Raster Datasets

Martin Werner
martin.werner@unibw.de

Institute for Applied Computer Science, Bundeswehr University Munich

ABSTRACT

In the last decade, more and more spatial data has been acquired

on a global scale due to satellite missions, social media, and co-

ordinated governmental activities. This observational data suffers

from huge storage footprints and makes global analysis challenging.

Therefore, many information products have been designed in which

observations are turned into global maps showing features such as

land cover or land use, often with only a few discrete values and

sparse spatial coverage like only within cities.

Traditional coding of such data as a raster image becomes chal-

lenging due to the sizes of the datasets and spatially non-local

access patterns, for example, when labeling social media streams.

This paper proposes GloBiMap, a randomized data structure,

based on Bloom filters, for modeling low-cardinality sparse raster

images of excessive sizes in a configurable amount of memory

with pure random access operations avoiding costly intermediate

decompression. In addition, the data structure is designed to correct

the inevitable errors of the randomized layer in order to have a

fully exact representation.

We show the feasibility of the approach on several real-world

data sets including the Global Urban Footprint in which each pixel

denotes whether a particular location contains a building at a res-

olution of roughly 10cm globally as well as on a global Twitter

sample of more than 220 million precisely geolocated tweets.

CCS CONCEPTS

· Information systems→ Point lookups; Data compression;

Geographic information systems; · Computing methodolo-

gies → Image representations.

KEYWORDS

Image Representation, Data Sparsity and Compression, Randomized

Data Structures, Geographic Information Systems

ACM Reference Format:

Martin Werner. 2019. GloBiMaps ś A Probabilistic Data Structure for In-

Memory Processing of Global Raster Datasets. In 27th ACM SIGSPATIAL

International Conference on Advances in Geographic Information Systems

(SIGSPATIAL ’19), November 5–8, 2019, Chicago, IL, USA. ACM, New York,

NY, USA, 10 pages. https://doi.org/10.1145/3347146.3359086

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SIGSPATIAL ’19, November 5–8, 2019, Chicago, IL, USA

© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6909-1/19/11. . . $15.00
https://doi.org/10.1145/3347146.3359086

1 INTRODUCTION

Managing big geospatial data has been a major research topic for

the spatial computing community in the last decades. Larger and

larger data sets lead to more and more distributed and parallel

computing and special approaches are needed for spatial data as

the parallelization of typical spatial algorithms is far from trivial.

At the same time, Earth observation has become a highly mature

field in which regional and global data sets are acquired, combined,

and published every day. For example, theNASAnight light imagery

provides a regularly updated raster image covering the whole Earth

representing the average light emission at night time. This beautiful

imagery is, of course, correlated to the human activities on Earth,

though not in an absolutely obvious way. The Copernicus program

of the European research agencies is publishing all satellite data

from Sentinel missions to the public and the United States provide

access to LandSat imagery. These globally available data sources can

be used to create global datasets at incredibly high spatial, temporal,

and thematic resolution. In addition, commercial satellites map the

Earth surface with unprecedented resolutions of few centimeters

and platforms such as Google Earth, Google Maps, ESRI maps, and

HERE provide many ready-to-use global raster products derived

from the available data.

Furthermore, social networks have grown almost global: services

like Facebook, Twitter, Flickr, and Instagram have become the lead-

ing social network platforms in many countries of the world. These

networks provide multimedia information consisting of location,

time, text, and imagery. These sources of information are impor-

tant as they are very timely and augment the birds-eye perspective

of remote sensing with a ground-level view. The combination of

social media and remote sensing is envisioned to become a major

driver of land-use estimation which is essential to many applica-

tions. For example, the United Nations raise attention to a set of

Sustainable Development Goals many of which are related to how

land is being used and where people live [9]. In this context, this

paper proposes a data structure GloBiMap for sparse binary rasters

with the following key properties:

• The data structure provides constant-time spatially random

access to individual pixels

• The data structure provides stateless access, that is, no tem-

porary memory is needed to access the information

• The data structure provides an efficient compression method

halving its size at the cost of additional error probability

• The data structure provides incremental low-resolution sketches

of the underlying data

• The data structure is fully configurable in a triple tradeoff

between error probability, memory usage, and computational

effort

SIGSPATIAL ’19, November 5–8, 2019, Chicago, IL, USA Martin Werner

• The error type is controlled and an exact version with small

additional memory overhead is provided

The remainder of this paper is structured as follows: the next Sec-

tion 2 presents related work, Section 3 presents the data structure

and associated algorithms, Section 4 introduces datasets for evalua-

tion, Section 5 fixes evaluation measures for this study, Section 6

evaluates the system on real-world global data sets, and Section 7

concludes the paper and discusses future work.

2 RELATED WORK

In this section, we recall three basic concepts related to how sparse

data sets can be represented. In the first section, we recall some

background on matrix representations for sparse linear algebra.

These are very efficient, but as they are usually optimized for linear

algebra access using atomic units like rows, columns or rectangular

slices, they don’t perform well for fully random access to single

locations. Then, we recall some background from image file formats,

which basically share the same structure of cutting large images into

scanlines, groups of scanlines, or rectangular slices following the

idea that nearby spatial points will usually be consumed together.

Similarly, random access is inefficient as full atomic units need

to be decompressed and provided in dense representation using

main memory. Finally, we present Bloom filters, which have been

invented to represent very sparse subsets of strings, namely English

words with irregular spelling. Though this data structure is widely

applied in big data systems, to the best of our knowledge, it has not

been applied to sparse raster representation which we propose in

this paper. However, it has been applied to trajectories [14] as well

as for representing small sets of locations in web browsers [11].

2.1 Sparse Binary Matrices

A sparse matrix is a matrix in which most of the values are zero. In

scientific computing, this sparsity is usually related to the break-

even of storing a matrix in dense form as an array of numbers

in contrast to storing only the values of the matrix that are non-

zero. That is, a sparse matrix in computation is a matrix that is

represented by representing the set of non-zero entries organizing

tuples (i, j,v) where i and j represent the row and column and v

is the value. Sparse matrices can be identified with point clouds

of integer coordinates and all aspects of spatial indexing can be

applied in order to speed up access to entries of sparse matrices.

However, sparse matrices are usually represented either in a naive

form in which the tuples are ordered and organized as a dictionary

or a list of lists or in a form optimized for linear algebra including

compressed sparse row (CSR) and compressed sparse column (CSC)

[2]. All of these data structures for sparse matrices, however, store

two integer indices in addition to the data. In CSR and CSC, one of

these integer indices can be compressed to store only the beginning

of each line, yet the second index column is as large as the number

of non-zero elements. Therefore, a sparse matrix typically uses

at least 2n +m memory cells, where n is the number of non-zero

entries andm is the number of rows (in CSR, resp. columns in CSC).

2.2 Image File Formats

Image compression is a rather classic topic and has been widely

discussed in the computer graphics and signal processing domains.

However, the presented image formats are often based on assump-

tions that are invalid for global raster data sets. Some of these file

formats expect that a file is used completely and is decoded as a

whole before using. This is, for example, true for portable network

graphics and JPEG images. In practice, most implementations (e.g.,

libpng and libjpeg) will load the whole image into main memory

and make it accessible as a dense matrix. Still, these formats are

widely applied in the context of global raster data sets, for example,

for disseminating spatial data sets to users over the Internet. A

web map service based on tiles of small 256x256 pixel images is

still the de-facto standard for providing huge raster graphics on

the web. Another image file format, the tagged image file format

(TIFF), is optimized for large data sets and allows for decoding only

parts of the image [7]. Therefore, the image is split into strips (e.g.,

multiple consecutive scanlines) or tiles (e.g., rectangular pieces of

data) which can be read individually. This architecture does not

allow for true random lookups, because each access needs to load

the whole strip or tile where the data resides in. But, the TIFF image

file format is widely used in Geographic Information Systems (GIS)

as there is a standardized extension known as GeoTIFF [10], where

the header of the image file contains information about the spatial

projection of the image data.

In summary, we conclude that storing a global raster data set as

a set of image files is a valid strategy for most application scenarios,

but it incurs large overhead if pixelwise random access happens

often, because a large environment of the pixel is decoded into

main memory before answering the query for this pixel.

2.3 Bloom Filter for Set Representation

In 1970, Bloom introduced a probabilistic data structure nowadays

called the Bloom filter which is capable of representing sets in main

memory [3, 4]. It provides the freedom to choose the amount of

memory used to model the set trading of memory consumption and

computational effort with error probability. The most important

property of bloom filters is, however, that they have only one type

of errors: false positives. While the data structure representing a

set does never report an element not to be in the set that has been

added before, it might report elements that have not been added

to the set. The basic construction of the Bloom filter is as follows:

first, let F denote a bit array of size m. Then, choose k pairwise

independent hash functions hi mapping all possible elements of the

set to a non-negative integer number smaller thanm. The empty

set is represented by an all-zero Bloom filter array F . The Bloom

filter now exposes its functionality through two operations Insert

and Test. Given an element e , the function Insert modifies the

Bloom filter to represent the fact that the element has been inserted.

In the same context, the function Test reports whether the data

structure indicates that the element has been inserted before, given

the limitation of false positive results. Both operations start by first

calculating the value of the chosen k hash functions applied to the

given element e . The Insert function sets all the slots identified by

the outcomes of the hashing to one while the Test function reports

the element not to be in the set if and only if one of these outcomes

points to a zero slot. It is obvious that this data structure cannot

have false negatives, as the Insert operation sets the very same bits

to one that the Test function is searching for a zero. On the other

GloBiMaps – A Probabilistic Data Structure for In-Memory Processing of Global Raster Datasets SIGSPATIAL ’19, November 5–8, 2019, Chicago, IL, USA

hand, when all the slots indexed by the hash functions are filled

with ones, this means that we can believe that the element has been

inserted though the values might have come from a combination

of inserting different elements due to possible hash collisions.

For a data structure with errors, it is most interesting, how these

errors can be controlled and for the case of the Bloom filter this is

quite simple. In fact, one can view a Bloom filter with n elements

as the result of setting an essentially random bit in the underlying

array to one for kn times as the hash functions turn the elements

into uniformly distributed random numbers. Now, finding a false

positive is as probable as it is to find k ones in random slots of the

filter, which is as probable as finding a one k times in a random slot.

In fact1, the following formula relates the parametersm, k , and the

number of elements n that have been inserted with a measure of

the fraction of zeros (foz).

foz =

(

1 −
1

m

)kn

≈ exp

(

−kn

m

)

Given that the hash functions are uniformly random and pairwise

independent, this fraction of zero is a good proxy for the probability

of finding a zero. Therefore, the false positive probability of the

filter can be derived as follows: a false positive happens, if k random

accesses to the bit field find a one, e.g., in

p = (1 − foz)k ≈

(

1 − exp

(

−kn

m

))k

(1)

cases. Given that the right hand side is differentiable, we can search

for aminimumofk by differentiating this expression and finding the

roots. In this way, one can show with straightforward calculations

that

k∗ =
m

n
log 2

is a global minimum of the (expected) false positive rate. That is,

given a memory budget ofm bits and a number of elements n to be

inserted into the filter, we can choose an optimal value k∗. However,

note that k is constrained to be an integer number of hash functions,

therefore, we will need to round k∗ to a nearby integer.

3 GLOBAL BINARY MAPS (GLOBIMAPS)

In this section, we introduce the data structure GloBiMap in which a

Bloom filter is used to store the set of ones in a global binary bitmap.

In addition, the data structure has an optional error correction table

for exact representations.

3.1 GloBiMaps Construction

The central part of a GloBiMap is a Bloom filter of chosen sizem. It

is mainly used to represent the raster cells that are occupied. The

rationale behind using a Bloom filter is that in many practical Earth

observation scenarios, the number of interesting cells is very small

compared to the number of measurement cells. Fixing a WGS84

global raster (e.g., representing the surface of the Earth in WGS84

coordinates and discretization the coordinate space in latitude and

longitude direction forming a raster), only 32.5% of the pixels of

a WGS84 water mask are not covered by water and only a small

1with neglectible and correctable technical errors related to statistical dependencies

fraction of about 0.13% is actually human built-up area. Therefore,

a lot of information related to social and socio-economic factors is

taking place in a very small fraction of the Earth surface allowing

for a better representation as compared to a dense raster that is

widely applied in remote sensing.

In order to construct the GloBiMap, we first convert each pixel

into a binary value and insert the pixels with the value true by

hashing two 64-bit coordinates (that is an array of 16 bytes) using

the Murmur3 hash function [1]. This hash function is known for its

excellent tradeoff between quality of distribution and performance.

In order to reduce the number of hash computations, we will use

the following hashing trick with which we can generate sufficiently

independent hash functions for a Bloom filter from just two actual

hash function calculations [6]. As the Murmur3 hash returns a hash

of 128 bit, we take the first 64 bits and the second 64 bits for the

two hash functions in the following formula:

hi (x) = hlow(x) + i · hhigh(x) mod 2m, i ∈ {1 . . .k}

This allows us to use a single computation of Murmur hash to

create a family of k hash functions based on a linear congruential

generator. Furthermore, note that a modulo of 2m can be computed

without a division as it is equal to computing a binary AND with

2m − 1. This can greatly increase performance yet limits us to the

use of power of two sizes for GloBiMap storage.

In addition, this puts a penalty on GloBiMaps larger than 4GB:

computational effort will grow as one needs more than 32 bits

for addressing the hash table leading to operations in the linear

congruential generation exceeding the typical 64bit address space

of a CPU. Instead, the program needs to split the numbers each into

a low and high word and perform complicated and time-consuming

partial operations for the hashing trick.

3.2 Multi-Layer GloBiMaps

As the construction and analysis of the GloBiMap data structure de-

pends only on the fraction of zeros, we can actually store more than

one layer of a GlobiMap into the same hash table. Therefore, one

would prefix the given array of 16 bytes representing coordinates

with any string leading to additional independent hash results. The

error analysis keeps intact, one only needs to consider that the

fraction of zeros governing the probability of finding a one for a

query now stems from knl times trying to set a slot to one where l

is the number of independent layers. Note that l layers allow for

modelling 2l values though false positives would now imply false

classifications in which the estimated value at a location is bit-wise

larger than the truth. Therefore, one should order the classes in

increasing importance.

3.3 Low-Resolution Incremental Rendering

The data structure has been designed to store very high resolution

imagery, because they are more relevant to applications and in-

creasing resolutions often increase sparsity as well. It is, however,

possible as well to use the GloBiMap data structure for statistical

incremental low-resolution rendering.

Exploiting the fact that the distribution of false positives is uni-

form, we can exploit the fact that many pixels of a high-resolution

raster overlap with a pixel in a low-resolution sketch. One gets

SIGSPATIAL ’19, November 5–8, 2019, Chicago, IL, USA Martin Werner

a first impression by testing one high-resolution pixel per low-

resolution pixel. Then, one can incrementally refine the result by

testing more and more different pixels overlapping into the area of

a low-resolution pixel. For visualization, one would use the mean

value of true and false to depict a summary of the underlying high-

resolution pixels.

The false positives inherent to the system would lead to the fact

that a known number of the tests (given by the false positive rate)

will return a true result though a false would have been appropriate.

This means that the mean for each pixel is too large by the false

positive rate times the number of pixels contained. Therefore, we

can subtract this constant bias from all pixels during the mean

calculation. For very low false positive rates, however, we can as

well ignore this bias if it remains much smaller than the expected

error of the sample mean or the color accuracy of the resulting

display image.

3.4 Alternating Coding

In order to improve the speed of rendering low-resolution sketches,

we can as well directly model the low-resolution sketches in the

probabilistic layer. This can be done by first storing a low-resolution

binary version of the dataset in the GloBiMap. Now, similar to a

quad-tree, we subdivide the low-resolution pixel and add all pixels

to the next zoom level that differ from the current zoom level.

Concretely, we name each pixel not only with its coordinates, but as

well with its zoom level starting with zero. That is, a pixel ł0_42_11ž

is the pixel in the 42nd row and 11th column of zoom level zero.

For zoom level one, each pixel is now subdivided into a number of

pixels. Some of these pixels will differ from the value that has been

modeled for the first zoom level. We store exactly those into the

first layer. That is, if a pixel is zero and the pixel in the previous

zoom level is one or if a pixel is one and the pixel in the previous

zoom level is zero, we add this pixel to the current layer.

With this data structure in place, we query for a pixel on a

particular zoom level by iteratively querying through all zoom

levels flipping the value between 0 and 1 each time we see a point.

This leads to a significantly quicker rasterization of low-resolution

sketches at the expense of a more involved pixel-wise rasterization

operation querying multiple zoom levels.

As a consequence, the false positives of the underlying Bloom

filter act in both directions: they can flip a one to zero and a zero to

one. However, the succeeding layer can flip the value back as well.

Furthermore, the error correction scheme introduced in the next

section can as well deal with this alternating behavior.

3.5 Error Correction Table

Additionally, the data structure can be augmented by a lookup table

modeling false positives. This, of course, reduces the amount of

compression previously introduced by the Bloom filter construction.

When applied with care it will create a flexible and fast compressed

data representation. Furthermore, the error correction data can

be restricted to areas of interest limiting the additional overhead

introduced by this error-correction layer. This error correction

construction can result in tiny tables in practice if the false positive

rate is kept low enough. Then, an efficient table lookup (using, for

example, hash tables or binary search on both coordinates) per pixel

becomes feasible. Note that this error correction can be delayed such

that it only occurs if the application really needs a refinement. In

this way, a spatial organization of larger error correction data is still

sensible, if error correction is applied only locally and comparably

seldom.

To illustrate this fact, we give the following example: When

applying low-resolution incremental rendering, we can avoid error

correction, as the error can be statistically corrected by subtracting

the bias. As soon as the user zooms in, however, we switch to using

error correction.

In this example, error correction is applied in a spatially local

setting only and, thus, spatial indices including grids and R-trees

can be used to organize the error correction data and load it into

memory only when needed and only for relevant regions.

In order to estimate the amount of storage needed for error cor-

rection, we rely on the analysis of the Bloom Filter as follows. First,

we can use the analysis of the Bloom filter directly to understand

the performance of the GloBiMap construction.

From Equation 1, we can calculate the probability of false posi-

tives as

p ≈

(

1 − exp

(

−kn

m

))k

Note that we can reduce the number of free parameters from three

to two using the relation for an optimal k∗

k∗ =
m

n
log 2

Assuming that the chosen hash functions (and the actual imple-

mentation of both the hash function and the hashing trick) behave

really well, we can conclude some aspects for GloBiMaps. Given

a binary raster of widthw and height h, we first need to compute

the number n of pixels with value true. The valuem is chosen as a

power of two in order to avoid costly modulo operations though this

can be relaxed at the expense of higher computational overheads.

Then, the expected number of false positives can be computed

and the number of wrong pixels is going to be about

E = (wh − n) · p

With respect to error correction tables, this implies that we expect

to store E pairs of coordinates.

3.6 Mod-2 Compressions

If the size of the underlying filter is a power of two, we can build

a pyramid of Bloom filters by iteratively cutting the Bloom hash

field into two halves and combining these with a binary OR op-

eration. The resulting hash field is identical to the hash field that

would have been generated with the same set of hash functions

but a value ofm/2 due to the modulo operation being used to map

integer hash values into the index range. Therefore, we can com-

press existing GloBiMaps quite efficiently to reduce memory usage

without recomputing GloBiMaps from scratch. Furthermore, this

allows for an iterative construction strategy in which we start with

a huge GloBiMap and create various variants of lower accuracy by

iteratively compressing the bit field. The whole set of GloBiMaps

constructed in this way needs a storage of

GloBiMaps – A Probabilistic Data Structure for In-Memory Processing of Global Raster Datasets SIGSPATIAL ’19, November 5–8, 2019, Chicago, IL, USA

l
∑

k=0

m

2k
=m

(

2 −
1

2l

)

That is, given a GloBiMap we need to afford less than twice

the storage to store all Mod-2 compressions allowing for access

to the data structure with varying memory overhead, pixel access

performance, and error rate.

3.7 GloBiMaps Construction Strategies

There are two major approaches to constructing GloBiMaps. The

first approach exploits a known data set and its exact properties

while the second approach exploits assumptions about the data that

might be handled by a GloBiMap.

We can actually configure the parameters based on the expected

amount of information. Taking into account that Bloom filters with

less than the number of elements used in configuration have a

smaller false positive rate and that Bloom filters can be compressed,

it makes sense to configure based on very simple assumptions about

sparsity.

If the data set is static, we can search for optimal values for the

seed, the hash functions,m and k in an empirical setting to come

up with the best set of parameters.

In contrast, one can configure a small Bloom filter and replace

it (by recomputation) each time the data is growing beyond the

current capacity of the filter. This approach is most widely used

in database systems relying on Bloom filters, because the inability

to delete information from Bloom filters and usually as well from

compact disk files leads to a compaction operation that is routinely

run over all data from time to time.

The third approach is to generate a huge Bloom filter, insert all

data and take the Modulo-2 compression that best fits the current

task. This approach is most efficient, when the system can gain

from many different instances of varying size and false-positive

rate.

3.8 GloBiMaps Interface

The chosen construction limits the way we can interact with the

dataset represented by GloBiMaps. In fact, we only provide three

operations to work with GloBiMaps: Get, Set, and Rasterize. The

Get operation is given a coordinate (x,y) and checks whether the

relevant element is in the Bloom filter. Optionally, it also checks

whether the element is a false positive by looking up in the error

correction table. For a multilayer GloBiMap, this can be iterated

using the prefix and for alternating coding, this can be iterated

for each layer. In general, this operation is quite quick involving

two hash calculations, several multiplications and several memory

lookups to check the bit array. Optionally, the Get operation can be

performed against one of the optional compressions of the Bloom

filter allowing for a smaller main memory consumption.

The Set operation can be used to set a coordinate in the GloBiMap

to one. It is similarly efficient as the Get operations and updates all

involved data structures such as the filter F, the error correction

table and, possibly, available compressed filters Pi .

The Rasterize function is a convenience function inwhich the Get

operation is applied over a rectangle and the rectangle is returned as

a matrix. As it is a read-only operation, it is naturally parallelizable

and, in fact, if GloBiMaps are implemented on a GPU it can bring

down the execution time of Rasterize to the speed of a single Get

times the number of pixels divided by the number of cores. For the

CPU case, the rasterize operation can also be optimized with read

pooling in which the data access to the global array is organized

in a way such that the CPU cache is invalidated less often. Both

optimizations, GPU implementation and CPU cache optimizations

are, however, beyond the scope of this paper. Still, the interface

reflects that a naïve implementation of Rasterize in terms of a loop

over Get is far from optimal.

4 EVALUATION DATASETS

GloBiMaps represent a general data structure capable of represent-

ing raster images. In order to evaluate GloBiMaps, we measure

several aspects characterizing the functionality and performance

of the data structure in the context of a multitude of datasets of

different nature.

4.1 Raster Datasets

Several datasets are needed in order to evaluate the GloBiMaps

data structure. This section introduces the choice of raster datasets

represented as GloBiMaps for the evaluation of the approach in

this paper.

4.1.1 Computer Game RasterMaps. In order to evaluate GloBiMaps,

we first conduct experiments on small datasets derived from com-

puter game maps [13]. The dataset being used consists of 462 game

maps each of which consists of a rectangular space in which pass-

able and non-passable terrain is being distinguished, Figure 1(a)

depicts some examples. These maps are rather small, but they con-

tain many realistic spatial distributions. The fraction of walkable

pixels ranges from 0.01 to 0.99 with a mean of 0.32 (variance 0.04).

4.1.2 Global Urban Footprint. The Global Urban Footprint is a

global raster product in which each place of the earth is assigned a

binary label of whether it is human built-up (urban) area or not [5].

This dataset has been produced by using about 308 TB of data from

the German radar satellites TerraSAR-X and Tandem-X. Figure 1(b)

depicts an excerpt for Europe.

4.1.3 Twitter Occurence. We collected a large sample from the

Twitter API including 220 million precisely geolocated tweets. As

you can clearly see in Figure 1(c), the dataset is skewed towards

the United States and some European countries. The major areas

of China, Russia, and Africa except the coastal regions and South

Africa did not come up significantly in this dataset. For China and

Russia, this is related to the fact that Twitter is not used there.

4.2 Regions of Interest

Some strategies of building and optimizing the representation of

a binary raster are based on regions of interest. While we are not

using regions of interests for the very small computer game datasets,

we employ them for global datasets. We used a set of challenge cities

roughly related to the cities that the United Nations expect to have

more than 10 million inhabitants in 20302 [8]. These form a natural,

2This list of cities consists of Tokyo, Delhi, Shanghai, Mumbai, Beijing, Dhaka, Karachi,
Al-Qahirah, Lagos, Ciudad de Mexico, Sao Paulo, Kinshasa, Osaka, New York-Newark,
Calcutta, Guangzhou, Chongqing, Buenos Aires, Manila, Istanbul, Bangalore, Tianjin,

SIGSPATIAL ’19, November 5–8, 2019, Chicago, IL, USA Martin Werner

(a) Computer Game Map Examples (b) Global Urban Footprint (Europe)

(c) Twitter Sample (d) City Dataset (used for Evaluation)

Figure 1: Dataset Overview

multi-cultural global challenge dataset for sparse raster datasets

representing intra-urban characteristics. Figure 1(d) depicts the

chosen city locations on a world map.

A number of four additional locations have been added to debug

and include a few extremely sparse, non-urban regions as well.

5 EVALUATION

The GloBiMap data structure has been proposed to avoid costly

disk lookups and paging architectures when working with global

sparse classification data sets. In general, two orthogonal aspects

of quality need to be discussed as this data structure consists of

a lossy encoding with an optional error correction scheme. The

first aspect łRepresentation Qualityž discusses how well the data

structure is able to model the data and the second aspect łRepre-

sentation Efficiencyž discusses how computationally efficient this

data structure turns out to be in practice for both operations of

encoding and decoding data sets.

5.1 Representation Quality

The representation quality of a lossy binary raster image data struc-

ture is commonly analyzed in terms of error rates and error distri-

butions. The basic such measure is given by the bit error rate that is

the probability of observing an erroneous bit in a uniform random

Rio de Janeiro, Chennai Madras, Jakarta, Los Angeles, Lahore, Hyderabad, Shenzhen,
Lima, Moscow, Bogota, Paris, Johannesburg, Bangkok, London, Dar es Salaam, Ah-
madabad, Luanda, Ho Chi Minh, and Chengdu.

location. This can be roughly identified with the fraction

BER =
Erroneous Pixels

#Total Pixels
.

As GloBiMaps are guaranteed to have no false negatives, this mea-

sure can be refined taking into account how difficult it is for such

a data structure to represent the data. As negative pixels cannot

induce errors, we normalize against all positive pixels only. That is

the negative bit error rate NBER is defined to be

NBER =
Erroneous Pixels

#Negative Pixels
.

This measure ranges from zero to one, while the BER depends

on the sparsity of the dataset.

With respect to spatial distribution of errors, we note that the

construction of a single global GloBiMap without any tiling or

spatial subdivision implies a nearly uniform spatial error distribu-

tion given that the errors stem from uniformly distributed hash

collisions.

It would, however, be an interesting question for future research,

whether one can come up with a family of hashing functions that

introduce a certain sensible spatial autocorrelation of false positives

such that false positives are more likely near true positives [12].

5.2 Representation Efficiency

For representation efficiency, we have to discuss theoretic measures

independent from the compute architecture and as well comment

on some real-world effects that have a non-neglectible effect on

GloBiMaps – A Probabilistic Data Structure for In-Memory Processing of Global Raster Datasets SIGSPATIAL ’19, November 5–8, 2019, Chicago, IL, USA

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4

Sparsity [Fraction of Ones]

R
e
la

ti
ve

 M
e
m

o
ry

 C
o
n
s
u
m

p
ti
o
n

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

● ● ● ●●●

●

●

●

●

●

●

●● ●

● ●

● ●

● ●●

●

● ● ●●● ●●

●

●

●●●

●

●

●●● ●

●

●

●

●

● ●● ● ●● ●

● ●

●

●●

●

● ●

●

●

●

●

●

●

●

●

● ●●

●● ●

●

●

●

●

●

●● ●

●

● ●● ●

●

●

●

●

●

●

●

● ●

●●

●

●

● ●

●

●

●

●

● ●●●

●

●

● ●● ●●● ● ●●● ●●

●

● ●

●

●

●

●

●●●

●

● ●

●●

●

●

● ●

●

●

●● ●●● ●

●

● ●●●● ● ●

●

●● ●●● ●●

●●

●● ● ●

● ●●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●●●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●● ●●● ● ●● ● ● ●●●

●

● ●● ●

●

●● ●

● ●

● ●● ●● ●● ● ●●● ●●

●

●

●●●

●

●

●●● ●

●

●

●

●

● ●● ● ●● ●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●● ●

●

●

●

●

●

●● ●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●●

●●

● ●

●

●

●

●

● ●

●●

● ●

● ●

●

●●

●

● ●●

●

●●

● ●

●

●

● ●

●

●●

●

●

●

●

●●

●

● ●

●

●

●●● ●●

●

● ●● ●●●

●

● ●

●

●● ●●

●

●●

●●

●

●

● ●

● ●● ●●

●●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●● ●●● ● ●● ● ● ●●●

●

● ●● ●

●

●● ●

● ●

●● ●● ●● ● ●●● ●● ●●●

●

●

● ●

●

●

●

●

●● ●

●●

● ●

● ●

●

●●● ● ●●

●

●●

● ●

●

●

● ●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●●

●

● ●

●

●

●●

● ● ●

●

●● ●●

●

●● ●

● ●

●

● ●● ●●

●●●

●

●

 5% NBER

 1% NBER

0.1% NBER

(a) Without Error Correction

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4

Sparsity [Fraction of Ones]
R

e
la

ti
ve

 M
e
m

o
ry

 C
o
n
s
u
m

p
ti
o
n

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

● ● ● ●●●

●

●

●

●

●

●

●● ●

●
●

● ●

● ●●

●

● ● ●●● ●●

●

●

●●●

●

●

●●● ●

●

●

●

●

● ●● ● ●● ●

● ●

●

●●

●

● ●

●

●

●

●

●

●

●

●

● ●●

●● ●

●

●

●

●

●

●● ●

●

● ●● ●

●

●

●

●

●

●

●

● ●

●●

●

●

● ●

●

●

●

●

● ●●●

●

●

● ●● ●●● ● ●●● ●●

●

●
●

●

●

●

●

●●●

●

● ●

●●

●

●

● ●

●

●

●● ●●● ●

●

● ●●●● ● ●

●

●● ●●● ●●

●●

●● ● ●

● ●●

●

●

●●

●

●
●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●●

●

●
● ●

●
●●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●
●

●

●

●

●

●

●
●

●
●● ●

●

●

●

●

●
●

●

●
●

●●
●

●
●

●

●

●

●

●

●

●

●●

● ●

●●●
●

●

●

●

●

●
●

●

●

●●

●

● ●
●●

●

●●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
● ●

●

●

●

● ●

●
●

●
●

●

●●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

● ●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●
●● ● ●

●
● ● ●

●●

●

●
●

●

●

●

●● ●

●

●

● ●

●
●

●

●

● ●
●●

● ●
●

●

●

●●●
●

●

●●● ●

●

●

●

●

● ●● ● ●● ●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●● ●

●

●

●

●

●

●● ●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●●

●
●

● ●

●

●

●

●

●
●

●●

●

●

● ●

●

●

●
●

●
●●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●●
●

●
●

●

●

● ●●●
●

● ●

●

●
● ●

●

●

●
●

●●

●

●

●
●

●
●●

●

●

●●

●

●●
●

●

●

●

●

●

●

●

●

●

● ●●
●

●

●
●●

●
●●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●
●

●

●●
●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●●
●

●

●
●

●

●
●

●

●
●

●

●
●

●●

●

●

●●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●
●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

● ● ●

●
●

●

●

●

●

● ●

●

●

● ●
●

●

●

●

●

●

●
●

●

●

●

●
●

●●

●

●

●

●

●
●

●

●

●
●

●
●

●
●

●
●

●

●●

●

● ●

●

● ●

●

●

●●

●

● ●
●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●

●
●

●

●

●

●
●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●
●

●

●
●● ● ●

●

●
●

●
●

●
●

●
●

●

●

●

●●

●

●

●

● ●
●

●

●

●
●

● ●●●

●

●

●

●
●

●●

●

●

●●● ●● ●

●

●●

●

● ● ●● ●

●

●

●

●●

●
● ●

●

●

●

●

●

●

●●

● ●●

●● ● ●●●

●

●

●
●

●

●

● ●
● ●

●●

●

●

●

●● ● ● ●●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

● ●

●

●

●
●●

●

●
●

●

●

●

●●

●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●
●●

●●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

● ●●
●

●

●
●

●

●
●●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●
●

●

● ●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●
●

●

● ●

●
●●

●

●

●

●

●

●
●

●

●

●

●
●

●●

●

●

●

● ●
●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●●

●

● ●
●

●

●

●

●

●

●●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●● ●

●

●

●

●

●

●

●

●●
● ●

●

●

●● ●
●

●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●

●

● ●
●

●

●

●

●
●

●●

●

●

●

●

●

●

●●

● ●

●●● ●● ●

●

●●
●

● ● ●● ●

●

●

●

●●

●
● ●● ●●●●

●
●●

●
●●

●● ● ●●●

●

●

●
●

●

●

● ●

●

●

●
●

●

●
●

●● ● ● ●●

●

●

●
●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

● ●

●

●

●

●

●

●

●
●

●
●

●

●●

●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●●

●●

●
●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●
●

●

●

●

●

●

● ●

●●

●

●

●

●

●
●

●

● ●

●
●●

●

●

●

●

●

●
●

●

●
●

●

●

●●

●

●

●

● ●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

● ●

●
●

●

●

●●

●

● ●
●

●

●

●

●

●

●●

●
●

●

●

●

●

●
●

●
●

●
●

●●

●

●
●

●

●

●

●● ●

●

●

●

●

●

●

●

●●
● ●

●

●

●● ●
●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

● ● ●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●●

●

●

●

●● ●

● ●
●

●

●

●

●

● ●

●

●

●

●

●

●●

●
●

●● ●●●●
●

●●
●

●●
●● ● ●●

●

●

●

●

●

●
●

● ●

●

● ●
●

●

●
●

●

●

● ● ●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

 1% NBER

 5% NBER

10% NBER

14% BER

20% NBER

(b) With Error Correction

Figure 2: Representation Efficiency (e.g., the main memory consumed by an uncompressed in-memory raster divided by the

GloBiMap memory consumption) in relation to Sparsity on the Computer Game Map Dataset

the practicability of the proposed approach. In summary, we record

the memory consumption, the fraction of zeros of the filter, and

the size of the correction map as measures for the computational

demand of an instantiated measure. Note that the fraction of zeros

is actually a measure of information, because the Shannon entropy

of the filter can be directly computed given this fraction as f :

H (F) = −
(

f log2 f + (1 − f) log2(1 − f)
)

In order to account for real-world aspects, wemeasure as well the

performance of the encoding and decoding operations rasterizing

certain urban areas across the globe using a parallel implementation

on a typical desktop CPU.

6 EXPERIMENTS

This section presents experiments evaluating the GloBiMap data

structure including a discussion of sparsity, compression efficiency,

and real-world performance on a representative set of tasks.

6.1 Representation Efficiency of GloBiMaps in
Relation to Data Sparsity

We discuss the question of how much sparsity is actually needed

to successfully apply the GloBiMap data structure on the computer

game dataset. The computer game datasets serve as a real-world

set of spatially sensible rasters with varying sparsity.

For this discussion, we use the memory consumption of a Glo-

BiMap with and without error correction as a single indicator of

performance and compare it to the traditional representation using

an in-memory raster.

Therefore, we build GloBiMaps of increasing sizes until they

hit several threshold values τ for the NBER. All other parameters

stay fixed. As growing the data structure reduces the NBER, this

process provides the smallest GloBiMap fulfilling the threshold τ

using the given other parameters. Note that we do not apply the

error correction scheme in this experiment.

Figure 2 depicts the result of this analysis for k = 2 hash func-

tions. The X-axis depicts a measure of sparsity given as the fraction

of ones in the input raster. In this measure, maximal sparsity re-

lates to small values on the X-axis. The Y-axis divides the memory

used for an error-corrected GloBiMap divided by the space needed

for representing the raster in a traditional in-memory matrix. The

admissible area where GloBiMaps have a smaller memory footprint

is shaded light gray.

Essentially, this figure illustrates the linear relationship between

NBER and sparsity. For a fixed NBER (e.g., color), the memory con-

sumption is a roughly linear function of the sparsity. Moreover,

significant amounts of sparsity (that is very small X-values) are

needed in order to encode datasets with small NBER. For the com-

puter game dataset, it has not been possible to encode the majority

of the maps with a NBER of less than 0.1%. This translates to the

fact that this dataset is not sparse enough for GloBiMaps.

There are some non-intuitive clusters of points with the same

Y coordinate. This is a coincidence of powers of two being used:

142 of the 462 computer game maps have a size of 512x512 pixels

and, therefore, a power-of-two memory consumption in the naïve

representation. As we are growing GloBiMaps with power-of-two

sizes, these horizontal clusters appear.

SIGSPATIAL ’19, November 5–8, 2019, Chicago, IL, USA Martin Werner

A second experiment involves the use of the error correcting

mechanism. For this, we extend the previous experiment and add

error correction after encoding. Thereby, the size of the data struc-

tures grows depending on the error rate of the encoding. The NBER

depicted in the figure represents the NBER used to configure the

filter size. The resulting data structures are all error-free due to

applying the error correction scheme. In other words, the given

NBER values steer between the performance of the probabilistic

layer and the size of the lookup table for error correction. We give

the total memory consumption including both layers assuming that

8 bytes per error are sufficient to represent the error coordinate.

This limits individual coordinate axes to values between zero and

4,294,967,295, sufficiently large for many applications.

What this figure actually illustrates is the fact that for sparse

datasets, the smallest NBER is not an ideal option. Instead, allowing

more errors and correcting them is better in terms of memory con-

sumption. For 10%, for example, this approach has chosen about

half the size of the GloBiMap as opposed to 5% and nearly a fourth

of the size of 1%. The error correction information often fits into

this additional free memory. With error correction and a NBER of

10% for the probabilistic layer, the GloBiMap data structure turned

out to be larger only in 5 of the 462 cases and in the worst case it

was only 1.31 times larger than the classical representation. As the

figure motivates, the configuration NBER can be used to gradually

turn the lines from ascending to descending. There is a break-even

at about 14% for which the trend of the relative memory fraction is

nearly horizontal with sparsity. This can be seen as an ideal config-

uration independent of sparsity. In this case, only 6 out of the 462

computer game maps use more memory in the GloBiMap frame-

work as opposed to the common raster memory representation and

on average the GlobiMaps used 70% of the memory of the usual

raster representation in this configuration setting.

6.2 Performance for the Global Urban
Footprint

The data structure has been specifically designed to capture the

sparsity of global spatial datasets related to anthropogenic effects,

especially in binary or low cardinality discrete cases. One canonical

dataset of this type is the Global Urban Footprint containing a one

in each and every place where a classification system has identified

built-up area.

6.2.1 Representation Efficiency. The dataset itself is provided in

various resolutions, where the highest resolution dataset contains

pixels of varying height and a slightly varying number of coordi-

nates in the horizontal direction as well due to rounding errors

from the tiling process. We combine these files into a raster by

first creating a point cloud with pixel center coordinates and then

rasterizing this point cloud to a uniform raster with a pixel size of

0.000111 degrees. This results in a uniform raster with about 3.24

million columns and 1.62 million rows for an overall raster size of

about 5.25 trillion pixels (e.g., 5.25 terapixel). However, only 0.13%

of these pixels represent urban regions. This amounts to a storage

size of 611GB if each pixel is represented with a single bit. Using

the theoretical analysis machinery, we configure variants given

in Table 1 based on choosing various sizesm and then optimally

Name Size k FOZ FPs (FPR) ECI

Small 8 GB 7 0.501 40 bn (0.76%) 307.3 GB

Medium 16 GB 14 0.501 309 mn (5.91e-05) 2.36 GB

Large 32 GB 28 0.501 18,278 (3.4e-9) 0.14 MB

Table 1: Real-World Performance of applying the GloBiMap

scheme for the Global Urban Footprint Dataset (FP=false

positive, FPR=false positive rate, FOZ=fraction of zeros,

ECI=size of the error correction table)

choosing k minimizing the size of the optional error correction

tables.

As one can see from this table, good false positive rates are

reached in all of the cases. However, the number of false positives

for the whole image greatly differs. For the small encodingwith only

8GB of main memory, the error correction table is clearly huge with

more than 300GB and it cannot be used without spatial indexing,

tiling, or selecting certain regions of interest only in which error

correction information is stored. Therefore, we propose to use this

representation only for a coarse filtering or visualization of high-

resolution datasets in lower resolutions without even computing

the error correction information. When doubling the size (medium)

to 16 GB, the optimal number of hash functions doubles as well.

This set of parameters results in a quite feasible pair of a 16GB

probabilistic layer based on 14 hash functions together with less

than 2.5GB error correction information. This can be easily held in

main memory on PCs and servers for processing and provides an

error free and high-performance representation of the global raster.

If main memory is a smaller concern, the large variant provides

almost error-free coding in a 32GB probabilistic layer. The expected

error rate will be about 3.4 pixels per megapixel. With about 140

kB, the error correction information is even smaller than usual

CPU cache and error correction will have a neglectible overhead as

opposed to memory access. In summary, we were able to construct

two lossless encodings supporting random access with 18.5 GB total

memory consumption and a little more than 32GB for a raster that

would at least occupy 611GB of main memory if each pixel would be

represented with a single bit. Relaxing the limitation of using only

power-of-two main memory sizes, we can even modulate between

those two examples at the cost of slower modulo computation.

6.2.2 Wall-clock Performance of Encoding. The encoding using

GloBiMaps in general incurs some additional overhead as opposed

to holding the data in memory. However, these overheads are quite

small if this allows avoiding costly disk accesses.

The following numbers were generated using a typical PC (Intel

Core i7 6700K, four cores, eight threads, 8MB cache) without an

SSD or RAID using a single 2 TB spinning disk for holding the data.

For the hashing trick, we use 64 bit instructions always. Similarly,

the MurmurHash3 implementation is using native 64 bit instruc-

tions all over the place and has been adopted from the reference

implementation of Appleby [1].

One should expect that encoding speed and decoding speed

differ a lot: for encoding, we need to compute all k hash functions.

Furthermore, it is not easily possible to implement atomic bit setting

on a bit-compressed array. For ease of implementation, we therefore

GloBiMaps – A Probabilistic Data Structure for In-Memory Processing of Global Raster Datasets SIGSPATIAL ’19, November 5–8, 2019, Chicago, IL, USA

make the Set method use the Bloom filter memory exclusively

limiting parallel efficiency. But as encoding efficiency is of minor

interest, this is tolerable. In future work, we envision to work on

an (almost) lock-free encoding scheme. For decoding, we can use

asynchronous memory access as the values do not change anymore.

Furthermore, we can stop the evaluation of a pixel at the first test

that hits a zero.

For performance estimation, we used the high-resolution global

urban footprint with its more than 6.78 billion non-zero pixels.

The dataset is represented as a point cloud in WGS84 coordinates,

that is, each pixel is represented as two 64 bit IEEE floating point

numbers for sufficient accuracy. This amounts to an input file size

of about 163 GB. During encoding, this file is read in chunks of 16.7

million entries (that is in blocks of 256 MB) and a parallel encoding

is performed using the parameter settings given in Table 1.

In general, CPU hashing dominates performance leading to the

expected behavior in encoding times: For the small setting with

7 hash functions on an 8GB hash field, the encoding process took

6,675 seconds (about 1.8 hours). This realizes a rate of about one

million insert operations per second or about seven megahashes per

second. Similarly, the medium setting employed 14 hash functions

on a 16GB bit field and needed an encoding time of 12,155 seconds

(about 3.37 hours). The marginal increase in hashing performance

can be explained from the fact that a larger fraction of CPU time

is used for hashing and, therefore, the probability of waiting for

the synchronous write operation to the filter is slightly reduced.

Finally, the large scenario (32GB, 28 hash functions) needed 27,049

seconds (about 7.51 hours) for encoding. This is again in the range of

four times the smallest scenario for an insert rate of 0.2507 million

inserts per second, roughly a fourth of the small scenario.

In general, these are tolerable times given that such datasets do

not change often and that the compression is impressive. In practice,

all three versions can be easily held in main memory leading to the

ability to perform global random access to the data.

6.2.3 Information-theoretic Evaluation. It is known that the infor-

mation embedded in a bit array is maximal if the bits form a random

sequence. For Bloom filters, the filter will reach this state if it is

optimally configured. Plugging in the optimal value of k∗ leads to a

fraction of zero of exactly 0.5 and the sequence is random as it is

constructed using uniformly random coin flips.

Observing the performance of the GloBiMap probabilistic layer,

we see fractions of zeros very near to the optimal point, but slightly

larger: 0.501191 for the small and the medium scenario and 0.501192.

This is a hint that both the Murmur hash and the hashing trick

did a reasonable work in providing the Bloom filter with nearly

uniform random information. With these numbers, we can actually

expect that the theoretical analysis holds and that the expected

false positive rates will be very near to the true false positive rate.

For future work, one could investigate in how far crypto hardware

such as the AES-NI or the RDRAND CPU instruction can improve

over the Murmur3 hash this in terms of quality or performance.

This, however, violates the platform independence of the current

implementation.

6.2.4 Wall-Clock Performance of Decoding. In order to check the

practical query performance, we rasterize a 2,000x2,000 pixel win-

dow around each of the selected 45 cities and measure wall-clock

time. Note that this time includes the time needed to write the

results into a file for later inspection. This workload amounts for

a total rasterization of about 180 megapixels from all around the

world.

For the small scenario, this process was finished in 45 seconds

leading to an average performance of 4 megapixels per second.

This time, the performance is bound by disk I/O. For the medium

scenario, the production of the raster images took 54s, still a decent

speed of about 3.33 megapixel per second. For the large scenario,

the rendering took 76.7s, a performance of about 2.35 megapixels

per second.

6.2.5 Qualitative Inspection over Europe. In the previous sections,

we discussed the GloBiMap data structure in terms of an exces-

sively high-resolution raster. In this section, we change to a lower-

resolution version of the same dataset to show how GloBiMaps

can compress image information into extremely small buckets of

information, which are helpful in parallel processing, because many

of those could be held in main memory in parallel or can be ex-

ploited in resource constrained contexts such as within a GPU or

on a mobile device.

For this section, we use a low-resolution version of the Global

Urban Footprint consisting of 192,857 rows and 462,859 columns

for a total number of about 89.256 gigapixel. We show renderings

of Europe taken from a global representation of the GUF created

by averaging 20x20 input pixels into a single pixel value. We create

modulo-2 compressions with sizes between 8MB and 512MB and

depict the results of rendering without error correction in Figure 3.

These images clearly show that 2MB of memory are not enough

for a reasonable representation of the GUF, while a size of 4MB

already shows a non-uniform distribution around capitals. With

8MB, you see a pretty clear picture of the urban structure of Europe

overlayed with some uniform noise while for 32MB it gets hard to

spot the noise with bare eyes in this representation of averaging

blocks of 20x20 pixels.

6.3 Results for other Datasets

Compressing the spatial substructure of Twitter social media data

is an interesting operation as Twitter provides a vital resource

of information for many applications and streams in ordered by

time leading to random spatial access. We conducted a large data

acquisition in which we collected a global sample of 220 million

precisely geolocated tweets (that is tweets with specified spatial

coordinates). We use the same grid as for the highly precise global

urban footprint with a total size of 5.25 trillion pixels to represent

even the finest spatial structures. Now, as many of the 200 million

tweets fall into the same pixel, we are finally able to compress the

occurrence of tweets in this very fine raster with only 64MB of main

memory and 4.5MB of error correction data. The encoding took

490s (slightly more than 8 minutes). Note that we did not sort the

220 million tweets in order to remove duplicates. Instead, we just

add different tweets that end up in the same pixel individually. This

avoids a costly sort and unique operation on the dataset. Rendering

the 45 test cities took a total of 45 seconds. A rendering from this

representation around the city of Tokyo is depicted in Figure 4.

SIGSPATIAL ’19, November 5–8, 2019, Chicago, IL, USA Martin Werner

(a) 2 MB (b) 4 MB (c) 8 MB (d) 16 MB

(e) 32 MB (f) 64 MB (g) 128 MB (h) 256 MB

Figure 3: Various Renderings of the lower-resolution GUF over Europe using differently sized GloBiMap representations.

Figure 4: Twitter Stream around Tokio (GloBiMap of 64MB)

7 CONCLUSION

With this paper, we have shown that even highly precise global

datasets can be held in main memory when exploiting the actual

sparsity of most effects of interest. We show that pixelwise random

access is possible leading to applications in spatial stream labeling,

where a temporally ordered stream of information (e.g., the Twit-

ter stream) is labeled from a sparse spatial knowledge source (e.g.,

land cover). Aside its efficient main memory representation and its

unique support for pixelwise access, the data structure is as well

computationally feasible as shown with pretty small encoding and

decoding times on CPUs. For future work, we envision to work on

the hashing scheme and to combine the methodology with more

traditional spatial indexing techniques including embedding Glo-

BiMaps into inner nodes of indexing trees. In addition, a discussion

of the tradeoff between direct and alternating coding would be an

interesting direction for further research.

REFERENCES
[1] Austin Appleby. 2008. Murmurhash 2.0.
[2] Randolph E Bank and Craig C Douglas. 1993. Sparse matrix multiplication

package (SMMP). Advances in Computational Mathematics 1, 1 (1993), 127ś137.
[3] Burton H Bloom. 1970. Space/time trade-offs in hash coding with allowable

errors. Commun. ACM 13, 7 (1970), 422ś426.
[4] Andrei Broder and Michael Mitzenmacher. 2004. Network applications of bloom

filters: A survey. Internet mathematics 1, 4 (2004), 485ś509.
[5] Thomas Esch, Mattia Marconcini, Andreas Felbier, Achim Roth, Wieke Heldens,

Martin Huber, Max Schwinger, Hannes Taubenböck, Andreas Müller, and Ste-
fan Dech. 2013. Urban footprint processorÐFully automated processing chain
generating settlement masks from global data of the TanDEM-X mission. IEEE
Geoscience and Remote Sensing Letters 10, 6 (2013), 1617ś1621.

[6] Adam Kirsch and Michael Mitzenmacher. 2008. Less hashing, same performance:
Building a better Bloom filter. Random Structures & Algorithms 33, 2 (2008),
187ś218.

[7] Samuel Leffler. 2003. LibTIFFśTIFF Library and Utilities. remotesens-
ing.org/libtiff.

[8] The United Nations. 2016. The World’s Cities in 2016 - Data Booklet.
http://www.un.org/en/development/desa/population/publications/pdf/urbanization/
the_worlds_cities_in_2016_data_booklet.pdf. Accessed 2017/11/30.

[9] United Nations. 2019. Sustainable Development Goals. Retrieved from https:
//www.un.org/sustainabledevelopment/.

[10] N Ritter and M Ruth. 1997. The GeoTiff data interchange standard for raster
geographic images. International Journal of Remote Sensing 18, 7 (1997), 1637ś
1647.

[11] Peter Ruppel and Axel Küpper. 2014. Geocookie: a space-efficient representation
of geographic location sets. Journal of Information Processing 22, 3 (2014), 418ś
424.

[12] Mirco Schönfeld and Martin Werner. 2013. Node Wake-Up via OVSF-Coded
Bloom Filters in Wireless Sensor Networks. In Proceedings of the 5th International
Conference on Ad Hoc Networks (ADHOCNETS 2013). 119ś134.

[13] N. Sturtevant. 2012. Benchmarks for Grid-Based Pathfinding. Transactions on
Computational Intelligence and AI in Games 4, 2 (2012), 144 ś 148.

[14] Martin Werner. 2015. BACR: Set Similarities with Lower Bounds and Application
to Spatial Trajectories. In 23rd ACM SIGSPATIAL International Conference on
Advances in Geographic Information Systems (ACM SIGSPATIAL 2015). ACM, 10.

	Abstract
	1 Introduction
	2 Related Work
	2.1 Sparse Binary Matrices
	2.2 Image File Formats
	2.3 Bloom Filter for Set Representation

	3 Global Binary Maps (GloBiMaps)
	3.1 GloBiMaps Construction
	3.2 Multi-Layer GloBiMaps
	3.3 Low-Resolution Incremental Rendering
	3.4 Alternating Coding
	3.5 Error Correction Table
	3.6 Mod-2 Compressions
	3.7 GloBiMaps Construction Strategies
	3.8 GloBiMaps Interface

	4 Evaluation Datasets
	4.1 Raster Datasets
	4.2 Regions of Interest

	5 Evaluation
	5.1 Representation Quality
	5.2 Representation Efficiency

	6 Experiments
	6.1 Representation Efficiency of GloBiMaps in Relation to Data Sparsity
	6.2 Performance for the Global Urban Footprint
	6.3 Results for other Datasets

	7 Conclusion
	References

