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Abstract—Understanding urban dynamics requires detailed
insights into urban land use. On the most fine-grained level
this classification is done on single building instance levels. This
level of detail can hardly be solved using remote sensing only,
but requires complementary data. Social media images are a
promising additional image data source since they are captured
on a global scale in vast volumes.

In this study we investigate the relation between objects
showing up in geotagged social media images and functions
of buildings proximate to the image location. We propose a
rasterization approach to embed features from images and labels
from a target domain to calculate mutual information both
domains share. In our study area of Los Angeles, USA, we
show that using object detection is a valuable way of extracting
features from social media images to predict building functions.
Furthermore, we present the most significant object types for five
types of buildings.

Index Terms—Building Classification, Social Media, Building
Usage, Social Media Image, Complementary Data Source, Urban
land use

I. INTRODUCTION

Figure 1: Examples of geo-tagged Flickr images

Remote sensing data is a comprehensive source of data in
spatial as well as in temporal domain. As a constant stream of
imagery acquired from space it allows land cover and land use
classification as well as detecting changes over time. However,
capturing land use in urban areas from aerial perspective
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is challenging due to ambiguities like distinguishing office
buildings and apartments from above.

Resolving these ambiguities requires additional data sources
like ground view data. This kind of imagery can be either
obtained from proprietary map data providers like Google
Street View or from public social media platforms like Flickr.
Although commercial providers acquire their data in a struc-
tured manner from a specific perspective there might still
be occlusions like buses and trees hiding the building itself.
Additionally, the update frequency of commercial ground view
data lies with the provider. And last but not least, capturing
data with high quality requires a huge effort, which has to be
justified.

In these cases, photos from different perspectives on social
media platforms can help out. They provide publicly available
photos taken by their users in different perspectives and
showing various motifs (Figure 1). Tourists take images at
landmarks and other touristic hotspots, whereas residents of
areas take photos of their activities. Both kinds of images can
be an additional source of information on the way towards
building a semantic map. While the first gives insights about
the things present at a location the latter shows what people
usually do in these places.

In this work we investigate the relation between the number
of different objects in an image and the building functions at
the same location. First, we present a method to co-register
image features and building functions as well as an approach
to compare them. For our method, we apply a state-of-the-
art object detection algorithm to a set of geo-tagged images
from Flickr and rasterize the object class counts at different
spatial resolutions. Second, we show our results in a study
area covering Los Angeles metropolitan area.

II. RELATED WORK

With the exponential growth of social media platforms there
has also been an increased scientific interest in exploiting the
data in these platforms in order to understand social, economic,
and ecological patterns.

Beyond land cover and land use Lee et al. studied the value
of Flickr images to predict 15 socio-economic binary labels
as a multilabel binary classification problem [1]. By applying
a CNN on their database of 40 million images they achieved
accuracies 8% to 24% improvement compared to a random
baseline on a global scale.



Antoniou et al. investigated the feasibility of geotagged
photos for land cover classification by manual labeling of
images regarding their usefulness for this classification task
[2]. Labelling was done on a dataset of images from London
metropolitan area, UK, and revealed that 40% of all Flickr
images were considered unusable for land cover classification.
Interestingly, the most useful Flickr images are indoor photos
revealing activities happening inside of buildings.

One of the most fine-grained hierarchical classification
scheme with five top classes, 16 middle classes, and 45 fine-
grained classes was proposed by Zhu et al. [3]. To deal with
the noisiness in their Flickr dataset they applied search-based
training set augmentation and online adaptive training. In
combination with their two-stream CNN, one for recognizing
objects and one for recognizing scenes, they were able to
achieve over 29% recall at land parcel level on 45 classes.

Fang et al. presented a hierarchical parcel scheme derived
from the OpenStreetMap road network and extrapolate the
land use shown in images to street level blocks [4]. In their
study area of London, they used geotagged images from the
Geograph Britain and Ireland project and predicted a five-class
land use schema based on a specialized Object Bank [8].

Our work focuses on using high-level, human understand-
able features for building function classification. We investi-
gate the relation between the number of different objects in an
image and the building functions around the places, where the
image was taken. This study gives an outlook to the maximum
performance that classifiers could reach when trained on this
data. In addition, this approach adds to the explainability of
the results as the basis for the decision remains a human-
understandable statistic of the number of things seen in an
image.

III. METHODOLOGY

We first show how we obtain data for the feature as well
as for the target domain before we present a way to embed
both modalities in a common raster. Finally, we explain how
to relate feature and target domain using mutual information.

A. Feature Extraction from Social Media Images

Let I = {(i1, l1), . . . , (in, ln)} be a set of geotagged images
with ix being an image and lx its associated location. We
apply an image detection algorithm on each ix and yield counts
cx ∈ N80. We use the SSD object detection algorithm [5]
trained on the COCO dataset [6] with a ResNet50 architecture
[7] for feature extraction, which is able to assign labels for 80
object classes. This combination has been shown to have a
good tradeoff between accuracy and speed (mAP 35 and 76
ms for inference on single image) [8]. Therefore, feature cx
has 80 dimensions with each dimension counting the number
of detected objects in one image. In our case, we append cx
to each image (ix, lx, cx).

B. Building Functions from OpenStreetMap

To obtain clear building functions we use the official
labelling scheme from OpenStreetMap (OSM) for the key

“building” according to their wiki1. All buildings that have
a label other than this are neglected.

Next, all buildings having one of these tags are mapped
to their cluster class according to Table I. In summary we
have five cluster classes “accommodation”, “commercial”,
“religious”, “civic”, and “other”. Thus, for each building
there is a building tag, a cluster class and its geometry as
a multipolygon.

Cluster OSM building tag

accommodation apartments, farm, hotel, house, detached, resi-
dential, dormitory, terrace, houseboat, bungalow,
static caravan, cabin

commercial commercial, office, industrial, retail, warehouse, kiosk
Religious religious, cathedral, chapel, church, mosque, temple,

synagogue, shrine
civic bakehouse, kindergarten, civic, hospital, school, sta-

dium, train station, transportation, university, grand-
stand, public

other barn, bridge, bunker, carport, conservatory, con-
struction, cowshed, digester, farm auxiliary, garage,
garages, garbage shed, greenhouse, hangar, hut,
pavilion, parking, riding hall, roof, shed, sports hall,
stable, sty, transformer tower, service, ruins, wa-
ter tower

Table I: Mapping of OpenStreetMap tags to target classes

C. Rasterization

Next, we rasterize geometries g by summing up the counts
for each class. For aerial images, we sum up feature counts c
for all images taken inside the area of a grid cell. In case of
buildings, we count the number of building functions in each
grid cell if a multipolygon overlays it. More formally: for
rasterizing the object counts c for each grid cell g = (cg, eg)
in the raster with eg as the spatial extent of the grid cell and
cg the band values of the grid cell.

cg =
∑

ci∀(ci, li) s.t. li in eg

By adding up all c for each raster grid cell at l, we obtain
a raster brick with n bands, one band for each dimension of
the feature space c.

D. Mutual Information

After rasterization, we evaluate the relation between feature
domain, i.e. object counts in images, and target domain,
i.e. building functions. This evaluation is based on mutual
information between each band in feature and in target domain,
F and T , respectively.

I(F, T ) =
∑
f∈F

∑
t∈T

p(f, t) log
p(f, t)

p(f)p(t)

The mutual information is a metric measuring the de-
pendence of two random variables [9]. While correlation
measures the linear dependence of two random variables,
mutual information calculates how much information in the

1https://wiki.openstreetmap.org/wiki/Key:building



joint probability distribution is common in both marginal
distributions.

IV. RESULTS

First, we give a brief introduction to the data captured in
Los Angeles metropolitan area. Then, we show the results of
our methodology starting with detection of objects in images
and spatial statistics of the rasterization process. Finally, we
present the mutual information correlation at different resolu-
tions as well as a selected example of mutual information.

A. Study Area and Dataset

We evaluate our method in the Los Angeles metropolitan
area using geo-tagged images from the social platform Flickr.
In this area of 8,270 km2 we collected 343,714 images using
the Flickr API. Figure 2 shows the spatial distribution of the
image dataset in our study area. At the beach, in the city
center, and in Disney World, hotspots are visible, whereas the
residential areas are sparsely covered.

Figure 2: Spatial density of Flickr images in Los Angeles
metropolitan area, background image ©Bing Aerial Maps

We get our building functions from OSM building labels.
By applying the aforementioned scheme, we have in summary
2,213,834 labeled buildings. Table II shows that the majority
of the buildings, namely 93.8%, are fall in the accommodation
class, with commercial use as the second most frequent usage.

Class Number of Buildings

Accommodation 2,077,275
Civic 8,733
Commercial 122,099
Other 5,631
Religious 78

Table II: Number of buildings for each target class

B. Detecting Objects in Social Media Images

In summary, the SSD algorithm detected 2,215,680 objects
in 109,741 images with 1,083,000 of these detections being
persons. The second most common class is car with 214,842
instances. Note that we do not set an uncertainty threshold
for the object detection algorithm, hence there can be false or
misclassified objects in our dataset. This is likely the reason
why 414 zebras and 518 giraffes are in the dataset. Still,
we believe that these noisy observations are helpful and that
they do not have a very negative effect on the classification

as we are usually aggregating many detections from multiple
instances for a decision.

C. Rasterization

To predict land use classes from the object counts, we
summarize the object counts for each raster grid cell and each
class. Since the spatial density of social media images is highly
volatile, we raster the counts in ten different spatial resolutions,
starting with 10 m to 100 m ground sampling distance. Table
III shows the number of grid cells that have a least one object
count in any class compared to the number of all grid cells.
At 10 m resolution only 0.05% of all grid cells have at least
one detected object. Even at 100 m resolution only 2.3% of
all grid cells are occupied with detections.

Extracting land use classes from OSM building tags results
in similar spatial densities. At 10 m resolution 2.7% of all grid
cells have a clear OSM land use class and at 100 m resolution
the fraction increases to 13.1%.

Spatial Res-
olution [m]

#Grid cells #Filled Feature
Cells

#Filled Target
Cells

10 131,077,000 77,599 3,575,067
20 32,769,250 65,542 2,022,459
30 14,569,296 58,029 1,256,380
40 8,194,050 52,717 841,979
50 5,243,080 48,583 582,346
60 3,642,324 45,144 424,090
70 2,677,128 42,405 323,941
80 2,049,102 40,122 256,384
90 1,619,160 38,020 208,299
100 1,310,770 36,037 172,996

Table III: Number of filled grid cells after rasterization of
features, i.e. object detections, and targets, i.e. OSM building
functions

D. Mutual Information

We investigate the relationship between object counts and
building functions in order to have an estimate on how hard
this problem will be for a machine learning algorithm. The
better the target classes can be separated by different features
values, the easier a classifier could fit the training data. Thus,
we want low correlation between the feature vectors, i.e. the
mutual information between different OSM classes should
be less than one. After calculating the mutual information
between all features and target classes, we calculate the cor-
relation of mutual information between target classes. Figure
3 shows the distribution of correlations between OSM classes
at different spatial resolutions. At 30 m and 100 m spatial
resolution the median correlation is 0.485, which is the lowest
value. However, the standard deviation at 30 m is lower than at
100 m, 0.12 vs. 0.16, respectively. From this point of view 30
m resolution might be a good candidate for training a classifier.
This is true as well from an application point of view: 30
m resolution covers most buildings and still has room for
including its outdoor environments and spatial context, where
most of the images are taken.
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Figure 3: Correlation between target classes in terms of mutual
information vectors at spatial resolutions from 10 m to 100 m

Taking a detailed look at the mutual information at 30 m
resolution reveals that on the one hand the top 3 labels with the
highest mutual information are dining table, truck, and cup, all
together with commercial (Figure 4). On the other hand, the
top 3 with the lowest mutual information are toaster, hair drier,
and zebra in combination with religious. Table IV summarizes
the top 5 labels with the highest mutual information between
OSM classes. Although all classes share some labels, there is
a clear difference between them.

accommodation civic commercial other religious

couch person dining table train potted plant
potted plant book truck truck chair
bed handbag cup bus person
bottle chair car handbag book
book tv bowl bench handbag

Table IV: Top 5 object classes by mutual information for each
target class

V. CONCLUSION AND OUTLOOK

In this paper we investigated the relation between objects in
social media images at locations and the functions of buildings
nearby. By applying a state-of-the-art object detection algo-
rithm, we extracted the frequency of 80 objects from Flickr
images and summarized them using rasterization. To relate this
with building functions, we gathered OpenStreetMap buildings
that have a label according to the OSM labelling scheme
and rasterized their respective building polygon footprints as
well. We calculated the mutual information between object
frequencies and buildings functions and found strong patterns
indicating that a classifier could fit this problem with high
accuracy. In the future we want to apply this to state-of-the-art
classification algorithms to see if this holds true. Additionally,
we could think of integrating further features like the relative
size of the objects in the picture as well as the uncertainty the
object detection classifier gives us.
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Figure 4: Mutual information between counts of detected
objects and OpenStreetMap classes at log-scale and at 30 m
resolution
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