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Abstract—In this paper, we propose a novel linear time online
algorithm for simplification of spatial trajectories. Trajectory
simplification plays a major role in movement data analytics,
in contexts such as reducing the communication overhead of
tracking applications, keeping big data collections manageable,
or harmonizing the number of points per trajectory. We follow
the framework of topological persistence in order to detect a set
of important points for the shape of the trajectory from local
geometry information. Topological is meant in the mathematical
sense in this paper and should not be confused with geographic
topology. Our approach is able to prune pairs of non-persistent
features in angle-representation of the trajectory. We show that
our approach outperforms previous work, including multireso-
lution simplification (MRS) by a significant margin over a wide
range of datasets without increasing computational complexity. In
addition, we compare our novel algorithm with Douglas Peucker
which is widely respected for its high-quality simplifications.
We conclude that some datasets are better simplified using
persistence-based methods and others are more difficult, but
that the variations between the three considered variants of
persistence-based simplification are small. In summary, this con-
cludes that our novel pruning rule Segment-Distance Simplifica-
tion (SDS) leads to more compact simplification results compared
to β-pruning persistence and multiresolution simplification at
similar quality levels in comparison to Douglas Peucker over a
wide range of datasets.

Index Terms—Trajectory Simplification; Movement Data Anal-
ysis; Spatial Computing

I. INTRODUCTION

Movement data is becoming a more and more important

resource for our modern societies [1]. For example, efficient

transportation research is regularly based on mobility data [2].

Given the current megatrend of urbanization and increasing

population densities, such data can pave the way to smart

cities, reduced emissions, and sustainable urban growth. Fur-

thermore, the collection of movement data has never been as

simple as today. In addition, trajectory computing has been

applied in a wide range of domains beyond transportation

or movement data analytics including molecular biology [3],

medicine [4], image analysis [5], [6], facial recognition [7] or

handwriting recognition [8] and signature verification [9].

In this paper, we consider the problem of simplification of

spatial trajectories. That is, we ask for a method to remove

points from a given trajectory without affecting the spatial

shape much. We consider only the spatial aspect of the set

of points of the piece-wise linear interpolation of the original

trajectory compared to the linear interpolation of the simplified

trajectory consisting only of the selected subset of trajectory

points.

In this paper, we present a novel method based on a filter

and refine framework in which persistence is first applied to

find a set of points that we can safely remove and to apply a

geometric pruning rule to the remaining points. The method

is related to multiresolution simplification [10], but reaches

better accuracy with similar runtime performance. Note that

this method provides a linear time algorithm which can easily

be formulated on a data stream such that simplification can

occur on a stream of incoming data.

The remainder of this paper is structured as follows: in

Section II, we introduce relevant related work. We explain

how persistence can be used for trajectory simplification and

give hints on practical issues due to the discrete nature of

our trajectory representation. We introduce β-pruning and

multiresolution simplification (MRS) as two baseline simplifi-

cation methods using topological persistence [10]. In Section

III, we introduce our algorithm for noise removal from β-

pruning and discuss some of its most important properties.

Section IV introduces quality measures and compare both

the simplification quality and the speed of the proposed

algorithm with its predecessors showing that we reach better

quality simplification in comparable time. Finally, Section V

concludes the paper.

II. RELATED WORK

Trajectory simplification is a very important aspect of

trajectory computing. When we reduce the number of points

representing each trajectory, we also reduce the number of

relations between two or more trajectories that might impact

computation in trajectory data mining applications. This means

that even a small reduction in the simplification phase of a

trajectory computing pipeline can have orders of magnitude

reduction of computational complexity further down the line.

Figure 1 depicts an original trajectory together with the

three results of trajectory simplification computed by the

algorithms compared in this paper, namely Douglas Peucker,

Multiresolution Simplification (MRS), and Segment Distance

Simplification (SDS). As one can clearly see, all three methods
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Fig. 1. Line Simplification Examples

significantly reduce the number of points used to represent a

trajectory, but all of them use slightly different sets of points

leading to differences in the details. Note that trajectory sim-

plification is based on the interpolation assumption and usually

formulated with linestrings, that is, with trajectories sampled at

points where the interpolation between two consecutive points

is given by linear interpolation. The most common setting for

trajectory simplification is a purely spatial one, that is, a setting

of shape simplification ignoring additional attributes such as

time or travel mode.

This is important, because some more advanced trajectory

simplification algorithms have been proposed and engineered

to protect not only the shape, but parameters such as speed or

aspects such as staypoints as well [11], [12].

However, there are many applications such as visualization,

path clustering, target detection, or smart routing that do not

actually relate to speed information. The presented algorithms

in this paper are meant for such applications.

In general, two types of simplification algorithms need to

be distinguished: those that simplify a given complete trajec-

tory called batch processing algorithms or those algorithms

that are applicable to an incoming data stream called online

algorithms. The persistence algorithm discussed in this paper

is capable of performing online processing.

We compare our results against the widely-respected Dou-

glas Peucker line simplification algorithm which is known for

its excellent objective and subjective quality [13].

A. Douglas Peucker Algorithm

The Douglas Peucker algorithm proceeds in iterations start-

ing with approximating the trajectory just by its first and last

point. The algorithm then searches the point of the original

trajectory with the maximal distance. If this point is farther

away than a predefined tolerance threshold ǫ, the algorithm

adds this point to the simplification and proceeds recursively

with two new segments formed by the new point and the two

segment points. This process is iterated until no point is found

with a distance greater than ǫ and the simplification consists

of all points that have been added in the process.

The recursion leads to an overall time complexity of

O(n log n) such that very long trajectories can be difficult to

simplify.

While the non-linear time complexity is an issue, it should

be seen in the light that common online simplification al-

gorithms have cubic time complexity such as the Opening

Window Algorithm [14], [15].

Therefore, the search for effective (in terms of quality) and

efficient (in terms of time complexity as well as real-world

implementation efficiency) trajectory simplification algorithms

is still ongoing [10]–[12] and we add a novel method to this

vibrant research area.

B. The Persistence Algorithm

The persistence algorithm is given in Algorithm 1. Note

that we formulate it now as a batch algorithm for a more

intuitive separation of concerns. However, all operations can be

interleaved and applied in a streaming setting to an incoming

point quite naturally, we will give some remarks on this at the

end of this section.

The first step in persistence-based algorithms is to represent

the trajectory as a real-valued function mapping time to some

real number. This is essential as persistence is going to use

the total odering of real numbers in order to formulate a

domination rule of features, namely, how persistent they are.

For spatial trajectories, ignoring time, a good representation

can be the angle function: we represent the trajectory T = (pi)
as C = (∢(pi, pi+1)). This function is then analyzed to

enumerate local minima and maxima, see line 1 in Algorithm

1. Note that while this sounds easy, it is not that obvious

for sampled data and one has to take care to generate a

consistent set of minima and maxima in this step. Then, for

each minimum, a component is initialized to start at this

minimum. A component is a data structure holding a start and

end index in the trajectory, respective angle function values,

and a flag whether this component is finished, initialized to

false. In addition, a flag is associated with each local maximum

to track whether this maximum has been used in a component

so far. The loop (line 3) now ensures that all maxima are

being used (e.g., bound to a component, that is related to a

beginning point inside a topological component). Therefore, a
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Abstractly speaking, these situations occur in cases where the

clear separation of spatial pruning and curvature-based pruning

of MRS fails to prune some points, because they are part of

longer persistent structures (e.g., not prunable by β-pruning)

and far away from each other (e.g., not prunable by spatial

distance).

Our contribution is a novel pruning rule which works similar

to MRS in very dense clusters, but is able to resolve colinear

points in later optimization stages where both the simple

distance pruning and the β-pruning fail to remove certain

redundant points.

Algorithm 2: SDS Algorithm

Data: Trajectory T

Input: β, ǫ, R

Result: Trajectory S

1 C ← Curve(T ) ;

2 for i = 1 . . . R do

3 C ← Persistence(C, β) ;

4 T ∗ =ExtractTrajectory(C) ;

5 foreach (pi, pi+1) segment in T ∗ do

6 if d (pi,Line(pi−1, pi+1)) < ǫ then

7 remove pi from C

8 end

9 end

10 ǫ← 2ǫ
11 end

The algorithm proceeds similar to MRS by alternating be-

tween applying persistence with β-pruning and spatial pruning,

but we replace the spatial pruning rule with a triangle rule: we

remove points if and only if the point line distance between a

given point and the predecessor and successor point is smaller

than a threshold ǫ, which is as well grown in rounds.

Note that we expect this approach to be no worse than MRS

for the reason that in dense clusters, the line between successor

and predecessor is very short such that the point line distance

is similar to the distance between a point and its successor.

But, we can prune some additional points where this distance

is very large and the curvature information does not allow for

pruning.

When looking at our novel pruning rule from this angle, one

can conclude that it is not purely spatial in terms of distances,

but that it rather includes a notion of curvature, because the

pruning measure is small if the middle point is almost linear

and grows with the angle reaching a maximum at orthogonal

corners.

IV. EVALUATION

In this section, we evaluate our novel simplification algo-

rithm on a wide range of datasets and for a wide range of

parameters. We compare our algorithm with MRS showing

that SDS outperforms MRS on average as well as in the vast

majority of cases. We identify root causes of how SDS is able

to outperform MRS and give a runtime comparison between

Douglas Peucker, Persistence, MRS, and SDS.

Name Size Type Source

Character 2,858 trajectories handwriting [16]
Geolife 25 mio. points gps [17]
Prague 250,000 points ego-shooter [18]
Roma 122 mio. points gps [19]

T-Drive 15 mio. points gps [20]
San Francisco 5 mio. points synthetic [21]

A. Datasets

For each of the datasets, we sampled consecutive subtra-

jectories of 100 points.We did not perform any preprocessing

and data gaps are left inside.

B. Evaluation Protocol and Performance Measure

We discuss the power of a simplification algorithm by

comparing the number of points used for the simplification to

the error introduced in the simplification procedure measured

by the Fréchet distance between the original and the simplified

trajectory.

In order for this trajectory distance to be sensible, we first

normalize all datasets to contain 100 points per trajectory,

choose a number of points uniformly from [10, 20] and search

for simplification parameters such that the mean resulting

trajectory length across the whole dataset equals this chosen

number. If we are able to find such parameters, error measures

of trajectories can be safely compared with each other as

all algorithms have used the same capacity for representing

trajectories.

For the two pruning rules leading to MRS and SDS, we

randomly choose an additional parameter κ. We then first

calibrate β-pruning to produce κN points and rely on the

pruning subsystem to reduce these κN points further to N

points. In this paper, κ is chosen as a uniform floating point

number between 1 and 4. In this way, we can frequently

expect to come up with a sensible intermediate results as

κ ∈ [min(κ)min(N),max(κ)max(N)] = [10, 80]. That is,

the first phase of simplification can prune between 20 and 90

points and the second phase the remaining points to reach the

target N .

Choosing κ = 1, of course, reduces both MRS and SDS to

the persistence algorithm as there is no “room” for improving

towards the target N . The number of rounds for SDS and

MRS is chosen between 3 and 5 and is the same across both

algorithms.

It is worth noting that all algorithms can fail to create an

exactly prescribed number of points: for Douglas Peucker, we

choose not not terminate the algorithm at the given number

of points, instead we let it run completely with a given fixed

parameter ǫ.

We object to choosing parameters per trajectory, as trajec-

tory simplification is in practice applied to unknown trajec-

tories from a certain data source and, therefore, trajectory

simplification parameters need to be chosen in advance to

knowing the trajectory.
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Fig. 3. Evaluation Results: 3(a) Relative Fréchet Error between SDS and MRS vs. MRS Overlength 3(b) Statistics of the vertical cluster of comparable
performance using average Overlength of SDS compared to MRS. 3(c)Illustrative Cases where MRS has difficulties 3(d)SDS vs. DP 3(e)MRS vs. DP 3(f)MRS
vs. SDS

In order to evaluate the simplification quality, we employ

the Fréchet distance of trajectories, which is a sound distance

measure in which time is correctly ignored. As simplification

changes the sampling structure quite significantly, the stability

of the Fréchet distance with respect to sampling structure is an

essential property. We used the open-sourced implementations

stemming from the ACM SIGSPATIAL GIS Cup 2017 [22]2.

C. Results

Figure 3(a) depicts the overall result distribution across all

random parameters and all datasets comparing the relative

performance gain of SDS compared to MRS (X-axis) to the

average number of points the MRS result is longer than

the SDS result. Two visual blocks can be distinguished: the

horizontal block near Y = 0 is a set of examples, where both

algorithms result in the same number of points yet SDS is

often better than MRS in terms of error (X < 1.0). The second

block is the vertical block near X = 1. Here, MRS and SDS

lead to comparable error yet MRS has used more points in

many cases Y > 0.

For the vertical cluster of comparable performance, we

give the distribution of how many points shorter the SDS

simplification has been observed in Figure 3(b). Note that the

X axis is scaled to percentages, hence, it is fair to say that for

many cases of observed comparable error, MRS used 5-15%

more points to model the trajectory.

There is no sensible error measure for examples in the

vertical cluster as it would be obscure to choose a tradeoff

between number of points and Fréchet distance for the vertical

cluster, hence we stick with the qualitative result that in these

cases SDS outperforms MRS in the sense of comparable error

reached with less points.

For the remainder of the evaluation, we concentrate on those

parameter choices where all algorithms where able to produce

the essentially same average number of points making the a

trajectory distance to the original trajectory a fair performance

metric.

First, a qualitative example is depicted in Figure 3(c). This

example occured in the Prague dataset and nicely illustrates

that the intuition of that spatial pruning might remove points in

a way such that not the “middle” point of a cluster survives,

but an “early” point is affirmed. In this image, it is obious

2see https://www.github.com/mwernerds/frechetrange

that the MRS result is not acceptable for this instance and

that one would prefer one of the others. You can see that even

plain persistence with β-pruning without MRS simplficiation

is able to find a better simplification in this case. Though the

algorithms are using a different number of points here, they

are successfully calibrated to emit the same number of points

on average across the whole Prague dataset.

Figure 3(d), 3(e), 3(f) compare the Fréchet distance of given

algorithm pairs as the quotient. Therefore, we compute for

algorithms A1 and A2 the quotient

dFréchet(T,A1(T ))

dFréchet(T,A2(T ))
,

where Ai is one out of SDS, MRS, and Douglas Peucker.

The direct comparison between MRS and SDS is depicted in

Figure 3(f). Here, depending on the dataset, SDS outperforms

MRS significantly across all datasets with only very few

examples where MRS found better simplifications.

Figure 4 depicts the comparison of SDS and MRS as a

histogram of the observed performances to further illustrate

the behaviour that SDS outperforms MRS in many cases quite

by a huge margin and that for some cases, the results are

comparable. Note again, that all of these statistics include

cases where κ ≈ 1 where neither MRS nor SDS are given

room for pruning.

You can see similar structures of the distributions across all

datasets: there are two short tails to the distribution: one where

SDS outperforms MRS by a wide margin and a short one to

the right where MRS outperforms SDS. A vertical bar at one

simplifies understanding: to the left of one are the cases where

SDS is better, to the right are those where MRS outperformed.

Notably, for Character and Prague we don’t have a single case

where MRS outperforms SDS.

Figure 4(f) depicts a scalability experiment with our current

implementation illustrating the fact that simplification time

of all algorithms grows with the size of the input trajectory.

The figures relate to simplifying a boundary of Bavaria with

more than 100,000 points. The figure shows the elapsed time

of running each algorithm on subtrajectories of this polygon

boundary. One clearly sees that persistence-based methods out-

perform Douglas Peucker by a margin and that SDS and MRS

have comparable runtime. The conclusion from this figure is

that - within our expectations - simple β-pruning is fastest,

MRS and SDS are similar and even in our non-optimized
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Fig. 4. (a) - (e) Performance Distributions of Fréchet Distance of SDS vs. MRS

implementation faster with a high number of five pruning

rounds than an optimized Douglas Peucker implementation.

We also confirm that the additional complexity of SDS over

MRS is not significant to the runtime.

V. CONCLUSION

Trajectory simplification is a challenging and important

primitive in movement data analysis. In this paper, one phi-

losophy of simplification based on representing trajectories

through a time-evolution function of their heading is evaluated

carefully in the light of existing work.

We confirm that these linear-time online algorithms are

suitable to replace Douglas Peucker in many applications

opening up real-time streaming trajectory data simplification

with a manageable penalty in simplification error per point.

In addition, we confirm that persistence simplification with β-

pruning leads to clusters of points in curved areas leading to

unneeded redundancy and defects. We evaluate the previously

proposed multiresolution pruning strategy known as the MRS

algorithm [10] and identify a weakness occurring when the

multiresolution pruning ends with colinear points of large

distance.

Based on this, we design a novel pruning rule implicitly

taking care that both curvature (e.g., local colinearity) and

distance are taken into account and show that the novel SDS

algorithm outperforms the MRS baseline significantly.

Finally, we provide an open-source implementation as part

of libtrajcomp [23]. For future work, we envision to increase

the performance of this approach by increasing memory local-

ity and cache-friendliness of the data access pattern to further

increase performance.
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