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Abstract. In the past decade, major breakthroughs in
sensor technology and algorithms have enabled the
functional analysis of urban regions based on Earth ob-
servation data. It has, for example, become possible to
assign functions to areas in cities on a regional scale.
With this paper, we develop a novel method for extract-
ing building functions from social media text alone.
Therefore, a technique of abstaining is applied in order
to overcome the fact that most tweets will not contain
information related to a building function albeit they
have been sent from a specific building as well as the
problem that classification schemes for building func-
tions are overlapping.
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1 Introduction

The fusion of social media data and remote sensing
data for urban studies is an emerging research area
(Salcedo-Sanz et al., 2020). While remote sensing sen-
sors reach resolutions in which the analysis of urban
regions with respect to building-level scale becomes
possible, the limitations of the birds-eye perspective of
satellite-acquired data is getting more and more prob-
lematic.

In general, there is a rising interest in urban regions due
to the fact that it is expected that the majority of people
will live in urban regions in the next years (Taubenböck
and Wurm, 2015). At the same time, many global chal-
lenges arise inside cities or due to urbanization (Cohen,
2006).

In this context, data fusion has become a major re-
search trend in the data science and earth observa-
tion field: how can we augment the highly accurate,
morphological data acquired from space with local,
ground-level information in order to resolve ambigu-
ities inherent to satellite imagery? In general, the ex-
traction of spatial data from social media has been
widely discussed, for example for geo-tagged photos
(Paldino et al., 2015; Zhu and Newsam, 2016), so-
cial media text (Crooks et al., 2013), and mobility data
(Veloso et al., 2011; Yuan et al., 2012).

One particularly interesting area of research is the
question of building functions. When we can assign
functions to buildings and at the same time have access
to the morphological parameters of buildings (foot-
print, height, etc.), applications including expected
population density are within reach. Though many
highly complicated and culturally variable concepts of
building functions exist, we concentrate on the sim-
plest yet most important distinction: residential and
commercial. These two classes clearly combine to the
majority of buildings in cities, though other classes like
religious places, amenities, or industrial might be inter-
esting as well.

Of course, the classification into residential and com-
mercial is not well-defined. First of all, some build-
ings are neither of those classes like public buildings
and religious places, and some are both like buildings
where the upper floors are residential while the first
floor is used for shops. Any promising classification
system must therefore be able to deal with class over-
lap as well as with outliers.

With this paper, we address the challenging question
whether social media text collected from the Twitter
social network can be used to assign buildings into
the two classes residential and commercial. While text



mining is a well-established research area with many
techniques, the performance for social media is still
limited due to the very short texts, the use of slang,
as well as the general low quality of language. In ad-
dition, text classification is often done with respect to
classification schemes that are actually related to the
text: traditional examples include the classification of
movie reviews into a scale from positive to negative
(Maas et al., 2011) or newsgroup postings into top-
ics (Mitchell; Nigam et al., 2000). For social media,
the sentiment has been a traditional research area (Go
et al., 2009) and this is clearly related to the text itself.

The problem discussed in this paper is different,
though: we expect that most of the tweets are not re-
lated to a building function at all. In other words, we
are trying to develop a classification system that is able
to filter irrelevant data items automatically and –at the
same time– work with very small support.

The third challenge for the task described in this pa-
per is class imbalance: while it is clear that most of the
buildings are residential, the fusion dataset is just op-
posite: when we assign tweets to buildings, we have
so many more tweets per commercial building that the
number of tweets in commercial buildings is signifi-
cantly larger than the number of tweets in residential
buildings. As described before, however, we might be
more interested in the residential class for the envi-
sioned applications related to population in cities. That
is, the minority class is given by social media near
residential buildings and is the main class of interest.
Hence, our classification system should be able to deal
well with the minority class. There are many systems
that are actually designed to detect a minority in the
area of anomaly and outlier detection (Kiermeier et al.,
2017). Still, due to the incompleteness and overlap of
our set of classes, this extreme case doesn’t fit. Instead,
we need a full classification that is putting some efforts
into understanding the minority class even if this is not
usually supported by typical classification metrics such
as cross-entropy loss or F1 scores, and consequently
not reachable by optimization-based learning like deep
learning alone.

We apply a technique known as abstaining (Chow,
1970) in order to solve the three outlined challenges
of our problem setting: (1) class overlap and class am-
biguity, (2) irrelevant data, and (3) class skew. In ab-
staining, a classifier is given the option to classify a
data instance into an additional class which basically
means that there is no evidence of putting it into one
of the real classes. The central challenge in this area
is how the cost of abstaining from classification relates
to the cost of a wrong classification. In cost-sensitive
classification (Elkan, 2001), this trade-off is the central
research topic explicit in assigning cost to errors and it
is surprisingly hard to come up with a non-subjective
optimal cost setting. Fortunately, in the case of prob-
abilistic classifiers it is possible to develop such sys-

tems based on information theory avoiding the subjec-
tive and complicated choice of parameters related to
misclassification cost.

Another twist on the problem is given by the spatial
nature of language. Geo-located tweets often contain
spatial references in the text. This includes the name
of places or restaurants. As we are interested in spa-
tial generalization, we have to make sure that we are
training our classifiers in a different area than where
we apply them. Classical random train-test splits that
do not account to spatial autocorrelation will provide
very optimistic estimations of performance.

The main contribution of this paper is the develop-
ment and analysis of a methodology to ensemble many
sparse text mining models in order to extract a highly
reliable label for at least a few buildings giving geo-
referenced tweet text alone. Note that one should not
expect to get very high accuracies with this approach,
but the purpose of this paper is not to show the best way
of assigning building functions. Instead, it shows that
the social media text contains an independent and im-
portant contribution to building function classification
and builds an informed basis for fusion with remote
sensing imagery as well as with social media imagery
and other data sources.

The remainder of this paper is structured as follows: in
the next Section 2, we introduce fundamental princi-
ples on abstaining in the context of probabilistic clas-
sifiers as well as model blending techniques. Section 3
describes the construction of the dataset. Then, Sec-
tion 4 introduces a case study in the Los Angeles area.
Section 5 discusses the results of this case study and,
finally, concludes the paper.

2 Fundamental Principles

In this section, we introduce some background on rel-
evant topics to the special classification problem. First,
we give an introduction to the classical technique of
abstaining and the recent developments related to us-
ing the modified normalized mutual information to
guide the parameter choice for abstaining costs. Fur-
thermore, we introduce some basic ensembling tech-
niques in which a set of different classifiers can be
combined to an overall classification result.

2.1 Text Classification

In the Internet area, huge collections of text are ac-
cessible to the public including all web pages, curated
collections like Wikipedia or news pages, email and
social media messages. The methods of text classifica-
tion aim at classifying documents into classes. In order
to do that, features can be extracted from higher order



language patterns such as grammar or just by word oc-
currences.

As this paper is concerned with rather informal and
very short documents (e.g., tweets), we decide to use
only low-level structures including words, characters
and character n-grams. Character n-grams are sub-
sequences of n-characters and thereby capture the con-
cept of syllables to a certain extent.

Given a set D of documents (e.g., tweets), a basic ap-
proach to text mining is based on first splitting the doc-
uments into words (tokenization) and using the occur-
rence statistics of words in documents for information
representation. That is, we fix a set of words called vo-
cabulary and create a vector for each document con-
taining the number of times each word of the vocabu-
lary occurred in the document. This results in a sparse
integer vector for each documents and, thus, the cor-
pus D of documents can naturally be represented as a
sparse integer matrix S.

However, the raw frequencies are not very useful as
many frequent words are uninformative in general
(“we”, “he”, “are”, etc.) and should be removed. At
the same time, rare words cannot be used in machine
learning setting as it is difficult to infer the meaning of
a word from the statistics of word occurences if the
number of occurences is small. Therefore, it is cus-
tomary to remove a certain, language-specific set of
words called stop-words, a certain fraction of the fre-
quent and rare words and to build the vocabulary some-
where in the middle of the trade-off between highly
frequent words and rare words. The technique of term-
frequency-inverse-document frequency (TF-IDF) has
further been proposed to normalize raw frequencies of
words in single documents by expected frequencies of
these words occurring in documents.

For tweets, these document-word matrices are very
sparse as tweets contain only a handful of words.
Therefore, we face a high risk of overfitting and ap-
ply simple classification schemes such as logistic re-
gression and multinomial Naïve Bayes. In addition, it
makes very clear that we should not expect that each
and every tweet contributes to our problem of assign-
ing building functions: only some of the words of ev-
ery tweet are part of the vocabulary and only some of
these words actually are non-neutral with respect to the
given classification task.

Two traditional approaches to text mining address the
problem that the overlap between two documents in
terms of vocabulary might be small. One is topic min-
ing in which a set of words from the vocabulary is
grouped together into a topic. The other approach is
text embedding in which words are assigned to posi-
tions in a chosen low-dimensional space such that the
Euclidean distance captures aspects of meaning. How-
ever, these two techniques need huge amounts of train-

ing data and / or a clear topic structure of all docu-
ments.

2.2 Learning under Class Imbalance

In the past, there have been many efforts to deal with
class imbalance. In machine learning, it is quite com-
mon that the interesting class only has a few examples
while the majority class is defined as the less important
default behavior. A broad range of specialized meth-
ods have been proposed, we want to give an overview
of the most important directions of dealing with imbal-
ance:

Collect more data: This one-fits-all rule of machine
learning is, of course, also valid for imbalanced
datasets. If it is possible to extract more examples from
both classes this can be very helpful.

Change your metric: If you know the imbalance of the
dataset and you also have a good argumentation to fix
the misclassification cost of both classes, you can try
to reflect this in the metric used for optimization-based
machine learning including, but not limited to, deep
learning.

Resample the dataset: Of course, one simple way of
getting rid of class imbalance is to randomly sample
the same amount of data from all classes. Two ma-
jor approaches can be distinguished: undersampling
the minority class and oversampling the majority class.
While undersampling has the advantage of being con-
ceptually simple, it reduces the amount of data that can
be effectively used. Various methods of sampling have
been studied in the literature (Tomek, 1976; Chawla
et al., 2002; Japkowicz, 2000).

For undersampling, it has been discussed, from which
region of the feature space of the classifier it is best to
draw the examples. For oversampling, it has been stud-
ied whether the data should just be repeated or how
synthetic examples can be generated. An advanced
method of this type is SMOTE in which a combina-
tion of over- and undersampling is applied in order to
maximize performance. The oversampling is done by
generating new examples in feature space by choosing
a random example, computing its k nearest neighbors
in feature space and creating new instances of the given
class by interpolating along the line connecting the ex-
ample with its k nearest neighbors. This approach leads
to better decision boundaries in classification such that
the classifier is not picking up details of the shape in-
duced by the real examples, but rather something re-
lated to a locally convex closure of this shape. Adaptive
variants of SMOTE including Borderline-SMOTE and
Adaptive Synthetic Sampling (ADA-SYN) have been
proposed that account for the fact that SMOTE might
increase the overlap of classes near the boundary (Han
et al., 2005; He et al., 2008).



Select Classifier: Some classifiers are known to work
better than others with imbalanced classes. For exam-
ple, trees and random forests are a good family of al-
gorithms for imbalanced classification due to the split-
ting rules employed. Some algorithms have actually
been modified to account for class imbalance in model
building. The interested reader is referred to a survey
of He and Garcia (He and Garcia, 2009).

Problem Reformulation: If the imbalance is rather ex-
treme, it might as well be advisable to change the per-
spective to anomaly detection. In this perspective, a
model is learned that basically describes the majority
class only. For a given instance, we then test whether it
is inside the expectation of the model or an anomaly.

2.3 Abstaining

While the methods from the previous section are help-
ful in order to deal with class imbalance, they are not
designed to work with blurry classification schemes
in which not every instance can be safely assigned
to a class. For example, it is –in general– not pos-
sible to assign a class like commercial or residential
to each and every building. Some are different (e.g.,
industrial) and some are mixtures (e.g., a shop and
some apartments). The situation gets even worse when
the relation between the observation and the problem
is not clear: while some tweets will contain informa-
tion about building functions, there are also tweets that
do not contain such information at all. Therefore, we
should not expect that the classification can be per-
formed for each instance. This ability of abstaining
from classification has been well studied in decision
theory (Chow, 1970) and has been successfully applied
in diverse domains (Pietraszek, 2007). Given a proba-
bilistic classifier φ that assigns a class probability vec-
tor φi to an instance xl, we can first inject a vector
of decision thresholds 0≤ τ ≤ 1 as it is described in
Eq. (1).

yl = argmax

(
φi(xl)

τi

)
, 0< τi ≤ 1 (1)

This vector τ can be used to vary the weight of proba-
bilities per class. We will use an optimization based on
mutual information to find good values of τ while it is
possible to manually adjust this vector.

In abstaining classification, this rule is being extended
to include the case of an additional class m+1. This
represented in Eq. (2).

yl =

{
argmax

(
φi(xl)
τi

)
if max

(
φi(xl)
τi

)
≥ 1

m+1 else
(2)

In general, the vector τ can be selected in various ways
based on domain knowledge or by optimizing case by

case. In contrast to such subjective choices, Zhang and
Hu proposed a strategy based on information theory
alone and showed that it is comparable to the best
known techniques including SMOTE (Chawla et al.,
2002), Chow’s rejection rule (Chow, 1970), as well as
to rejection based on the geometric mean over a large
range of datasets covering single-class and multiclass
problems as well as abstaining and non-abstaining sit-
uations. We adopt this mechanism, because it is com-
pletely parameter-free and clearly rooted in theory.

Normalized mutual information is a traditional mea-
sure for the degree of dependence between two random
variables T and Y. It is defined to be

NI(T,Y ) =
I(T,Y )

H(T )
,

where H is the Shannon entropy, descried in Eq. (3),
and I is the mutual information, which is described in
Eq. (4).

H(T ) =−
m∑
i=1

P (T = i) log2P (T = i) (3)

I(T,Y ) =

m∑
i=1

m+1∑
j=1

P (T = i,Y = j)·

· log2
P (T = i,Y = j)

P (T = i)P (Y = j) (4)

In general, it is difficult to calculate the involved prob-
abilities. Still, Hu et al. proposed an empirical estima-
tion based on the entries of the confusion matrix.

T Y
1 2 . . . m m+1

1 c11 c12 · · · c1m c1(m+1)

2 c21 c22 · · · c2m c2(m+1)

...
...

...
. . .

...
...

m cm1 cm2 · · · cmm cm(m+1)

Table 1. Representation of an confusion matrix.

Given a confusion matrix, such as in Table 1 of T and
Y with an additional column m+1 covering the possi-
ble cases of abstaining, mutual information can be ap-
proximated by Eq. (5) according to (Bao-Gang et al.,
2012).

I(T,Y )≈ I(C) =

−

∑m
i=1

∑m
j=1 cij log2

(
cij

Ci
∑m

i=1

cij
n

)
∑m
i=1Ci log2

Ci

n

, (5)

where Ci are the sum of the i-th row and n=∑
i

∑
j cij is the total number of samples. Note that



the second sum goes to m instead of m+1, which is
not rigorously correct, but overcomes the limitation of
NI not changing value if rejections are made within a
single class, compare (HU and WANG, 2008).

Using this measure as a measure for the quality of an
abstained classifier, we can optimize the value of τ .

Optimizing Abstaining Classifiers: A central chal-
lenge in cost-sensitive and abstaining classification is
to assign the weightings or costs in an optimal man-
ner. We apply a simple grid search and Powell’s algo-
rithm (Powell, 1964) in order to optimize for the best
classifier, that is, the classifier using a threshold vector
τ such that its decisions maximize normalized mutual
information with the ground truth, see Eq. (6).

τ∗ = argmaxNI(t,y = φτ (x)) (6)

The φτ is given by abstaining from classification for a
probabilistic classifier φ from Eq. (7).

It is worth noting that normalized information is bi-
ased towards the minority class. That is, abstaining will
improve the error behavior of the minority class more
than of the majority class in unbalanced situations as
ours.

2.4 Ensembling Models

Ensembling many weak classifiers in order to obtain
a better overall classification has long been discussed.
For example, in 1984 Granger already writes: “The
common practice, however, is to obtain a weighted av-
erage of forecasts [...]”. That is, already in 1984 it was
widely accepted that averaging machine learning mod-
els increases the performance.

While ensembling can be formulated quite generic by
saying that ensembling covers the case of building a
novel classification problem by applying several clas-
sification models and building the model from their
output or intermediate information, we concentrate on
several basic approaches in order to remedy the impact
of singular choices.

The simplest way of combining probabilistic models
is through averaging. Given n probabilistic classifiers
φ1 . . .φn, the classifier

φ∗(x) =
1

n

∑
i

φi(x) (7)

is a probabilistic classifier which is surprisingly strong,
especially when the individual classifiers φi show a
certain diversity (good performance, but low pairwise
correlation). This approach is also known as model
blending. A more involved approach is to use the clas-
sifiers φi to generate a novel machine learning prob-
lem, namely, predict y from the vector φi(x). A typi-
cal choice is to use logistic regression for this step. In
contrast to the model blending approach, this way of

model ensembling is more stable with respect to corre-
lated classifiers and can perform more complex model
combinations. It is also known as model stacking.

While there are many other methods of model ensem-
bling, the given methods are chosen for their unbeaten
performance given their simplicity and the fact that
they do not need too much additional data for training
and verification.

3 Dataset Description

During this experiment a dataset has been created
where a million of tweets has been assigned to two
classes in Los Angeles. Therefore, we first collect ge-
olocated tweets in this area, relate them to the nearest
building in OpenStreetMap, and prepare a text mining
problem by assigning the functional class of a building
as derived from OSM to the nearby tweets.

Twitter Data Preparation: The public Twitter API
provides a function for streaming up to one percent of
all tweets published on the Twitter platform. We col-
lected a dataset of nearly 4TB of tweets using this API.
From this dataset, we filtered only those tweets that
are published with a precise geo-location. We expect
that most of these tweets are associated to the loca-
tion, which has been assign by the user or the appli-
cation itself. It needs to be mentioned that this is not
true for all tweets. For example, Twitter bots can create
arbitrary spatial patterns by publishing tweets in fake
locations. Still, we assume that a significant amount
of geo-located tweets originates from this location and
the fact that we can reach high classification precision
from Twitter text alone confirms this assumption.

OSM Buildings: In Los Angeles, our study region,
the OpenStreetMap contains 24,898 building polygons
that are clearly specified as residential or commercial.
With the study (see Section 4), we concentrate on those
buildings and assume that the labels assigned by the
OSM community are largely correct.

Spatial Join of Tweets and OSM Buildings: In the
spatial nearest neighbour join phase, we assign each
tweet to the nearest building of the OSM building
polygons dataset. After joining, we remove assign-
ments that appear to be too far away by introduc-
ing a pseudo-distance threshold of 0.001, which cor-
responds to roughly 100 meters. This distance is mea-
sured as the Euclidean distance in the WGS84 coordi-
nate space and, therefore, has a varying interpretation
across Earth.

Dataset Split: To evaluate the system, we train the en-
semble using half the available data in a given region
and test on the other half. While this type of a spatial
train-test split is needed to get reliable estimations of
performance, we should avoid having a different distri-



(a) Well-classified OSM buildings and a spatial
train-test split.

(b) Tweets collected for the area of Los Angeles.

Figure 1. The dataset of the Los Angeles area including spatial split information, ground truth, and tweet locations (Map Data
©2018 Google).

bution of building or district functions. Figure 1 depicts
the chosen split.

Los Angeles Tweets - Dataset: In Los Angeles, we ex-
tracted 1,223,037 precisely geo-located tweets in half
a year between November 2017 and May 2018. Fur-
thermore, the dataset has been split vertically in equal
partitions and has been balanced such that both classes
contain roughly the same number of samples. Each of
the splits, resulting from splitting west and east as well
as commercial and residential, contains 16,133 exam-
ples.

In this way, we obtain a dataset in which most build-
ings are set into relation with many tweets. Figure 2
depicts the distribution of tweets per building for this
study. One can see that tweets concentrate on a minor-
ity number of buildings. While the average number of
tweets per building is 47.23 in this dataset, only 30%
of the buildings have more than ten tweets, and 19%
have more than 20 tweets and 5.6% have more than
100 tweets.

4 Case Study in Los Angeles

We decided to answer the question of whether
function-related information can be unlocked from
tweet text alone in the area of Los Angeles. First, there
is a significant amount of social media available, sec-
ond, the English language is dominant in this area for
which the largest collections of text mining training
data are available (English Wikipedia and News), and,
third, the OSM contains very many buildings explicitly
labelled commercial or residential.

We proceed as follows: first, we fix baselines by ap-
plying a wide range of sparse text mining models to
the problem. Then, we introduce information-optimal
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Figure 2. Number of tweets per building for the dataset

abstaining. Finally, we analyze the behavior of simple
ensembles.

4.1 Sparse Text Mining Models

We start by analyzing a single classifier in the area of
Los Angeles. We perform analysis on a tweet by tweet
basis and do not aggregate tweets per building as we
expect that certain tweets lead to abstaining as they are
unrelated to the building function while other tweets
clearly contain a hint on the building function. First,
we extract a sparse matrix based on counting all word
occurrences in the tweets and normalizing those using
the term frequency inverse document frequency strat-
egy (TF-IDF). This leads to a total of 71,994 columns
and given that tweets are very short texts to a very
sparse representation of each and every tweet.



Classifier Training Test
Commercial Residential Commercial Residential

Ridge 0.97 0.97 0.50 0.50
Perceptron 1.00 1.00 0.50 0.48
kNN 0.72 0.79 0.40 0.57
RF 1.00 1.00 0.49 0.53
X-Tree 1.00 1.00 0.50 0.52
SVC-L2 0.99 0.99 0.50 0.50
SVC-L1 0.91 0.91 0.50 0.51
ElasticNet 0.77 0.70 0.54 0.42
MN-NB 0.99 0.99 0.52 0.52
SVC-L1/2 0.94 0.94 0.50 0.50

Table 2. Precision of selected single classifiers for sparse text representation using described dataset and framework.

We conducted experiments with various classifiers in-
cluding Ridge regression, a Perceptron trained for 50
steps, a Passive-Aggressive Classifier (Crammer et al.,
2006), kNN classification, Random forests with 100
trees, and several support vector machine and neural
network classifiers, sometimes regularized with l1 or
l2 penalties, as well as Naïve Bayes algorithms using
Multinomial distributions. In addition, we performed
feature selection using an l1-penalized support vector
machine classifier and trained an l2 penalized model
only on the selected features.

While all these classifiers are heavily overfitting the
training set and showing poor generalization, we ex-
pect that some of the classifications in the test set are
not made by chance alone and are going to try to find
them via abstaining in the next section.

Table 2 shows results of the classifiers. In general,
the picture is clear: The algorithms are highly overfit-
ting on the training split and do not perform signif-
icantly better than random on the test set. However,
there seems to be some information extracted at least
for a few tweets and we want to extract exactly this
knowledge using abstaining. It is clear that most of the
tweets do not contain information about the building
function at all. On the other hand, the classifiers might
have collected information in their probabilities that al-
low us to select those instances where there is informa-
tion and use those for classification.

We apply information-optimal abstaining, as explained
in Section 3,to find a threshold vector τ such that the
joint information is optimized. However, we can only
apply abstaining to probabilistic classifiers directly. In
order to get a clear picture, we restrict attention to those
classifiers, where a probability is naturally available.
Note however, that many classifiers can be calibrated
to give probabilities. Still, this would need another
dataset split in order to use different sets for training
and calibration. Given the spatial nature of our prob-
lem, however, this would greatly reduce the amount of
available information for training and at the same time
it is unclear whether a calibration on a spatial disjoint

set is actually working well. Therefore, we omit this
option for urban-scale studies as it is too likely that a
spatially disjoint split of the training set does cover dif-
ferent functional regions of a city.

As abstained classification basically tries to increase
precision by reducing recall, we shift attention from
the F1 score to the per-class precision and recall. We
only present numbers for the test set in Table 3. The
multinomial Naïve Bayes has been trained with dif-
ferent Laplace smoothing parameters (MN-NB1 with
0.001, MN-NB2 with 0.01, MN-NB3 with 0.1). This
parameter steers how the probabilities are adjusted for
words in the test set that have not been in the train set.
Of course, this has an interesting effect on abstaining
as it directly modifies the probabilities.

As you can see from Table 3, a larger smoothing pa-
rameter for Multinomial Naïve Bayes increases the
information-optimal abstain rate. In essence, the pre-
cision of the minority class increases while the recall
is decreasing. One also observers that the classifiers
based on regularized stochastic gradient decent show
good values for the minority class.
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Rate



Classifier Abstain-Rate Commercial Residential
Precision Recall Precision Recall

MN-NB1 63% 0.54 0.19 0.57 0.21
MN-NB2 72% 0.53 0.14 0.58 0.17
MN-NB3 89% 0.55 0.04 0.62 0.09
SGD-L2 99% 0.17 0.00 0.83 0.01
SGD-L1 96% 0.56 0.01 0.76 0.04

Table 3. Precision and recall for the abstained classifiers.

Figure 3 depicts the influence of the smoothing param-
eter on model behaviour. Larger regularization param-
eters lead to higher performance for the minority class
yet at the same time to a lower fraction of classified
elements. That is, choosing a larger number is more
conservative.

In summary, this section showed that it is very dif-
ficult to learn the association of tweets and building
functions. In fact, classifiers quickly overfit the train-
ing set and do not generalize. However, the discussion
of abstaining classifiers revealed that some knowledge
is embedded and that rejecting more examples consis-
tently increases the precision of the minority class to
more than 80% for only one percent of the test sam-
ples. Still, this means that we are able to assign a label
to 168 buildings. Given the fact, that we have many
unclassified buildings in OSM, assigning a class with
80% for one percent of those buildings is still a very
valuable result and encourages our vision that social
media is an interesting data space augmenting Earth
observation in urban areas. Combining this with a hu-
man operator could speed up building mapping, for ex-
ample.

4.2 Ensembling Abstaining Models

The previous sections have shown that a multitude of
models and approaches is able to unlock a little bit
of information about the building function from using
Tweet text alone. In this section, we are going to en-
semble the various models, because we expect that the
information, they learned is different for each model
and that they can be combined to a stronger model
through ensembling. For the final ensemble in this pa-
per, we applied sparse text mining models on the given
dataset of one million tweets near Los Angeles. In a
first step, we rejected words from the vocabulary that
occur in less than 0.1% of the document and those that
occur in more than 20% of the documents. The first
rejection threshold is related to rare words that won’t
generalize and the second threshold has been chosen
quite low and is related to corpus-specific stop-words.
This includes many hashtags, smileys, and emoticons.
This results in a vocabulary of 1,032 words. With
this data, we trained nine different classifiers from the
Naïve Bayes family as well as support vector machines
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Figure 4. Performance of the Ensembles with Abstaining of
different classifiers. Where blue is the training precision, red
is the training recall, gray is the test precision, orange is the
test recall, black is the abstained test precision and yellow is
the abstained test recall.

and logistic regressions. Given the large corpus, these
all reached good performances depicted in Figure 4.

This Figure depicts the performance of the minority
class (residential buildings). We give precision and
recall for the training, test, and abstained validation.
You can see that with this large corpus of more than
one million tweets and by rejecting rare and frequent
words, the bias is significantly reduced. Precision and
recall of train and test set are in the same range of about
60% to 80%. Information-optimal abstaining was ap-
plied to each and every classifier individually leading
to high precision values in the range of 70% to 80%
with reduced recall. Finally, we build an ensemble of
all of these models by building a weighted average of
these models. The weights are taken from the expected
precision of the residential class as we are not inter-
ested in high recall, but in very high reliability for a
few buildings. This gives us a new probabilistic clas-
sifier P . This results in a classifier with 85% accuracy
and a recall of 2% translating to 1937 classifications
that have been done with this performance. In all other
cases, the classifier decided that there is not enough
certainty to assign a class and abstained from classifi-
cation. Still, we can also apply the information-optimal
abstaining machinery to this ensemble classifier. As we
already put a lot on emphasis on the residential class,
it is not surprising that this one is worse on the minor-
ity class as opposed to the previous one, which largely



Classifier Abstain-Rate Training Test
Commercial Residential Commercial Residential

BIRP 54 % 0.60 0.78 0.82 0.26
HRF1 58 % 0.70 0.23 0.75 0.38
AVE - 0.59 0.85 0.73 0.41
AVE-A 16 % 0.61 0.72 0.75 0.37
AVE-F1 - 0.59 0.86 0.74 0.52
AVE-F1-A 16 % 0.61 0.72 0.75 0.37

Table 4. Final Classification Ensembles.

ignored negative effects on the commercial class by av-
eraging using residential layer performance. Still, it is
a very good, general purpose classifier leading to 61%
precision for the commercial class with a recall of 72%
and 75% precision for the residential class with a high
recall of 37%. In fact, this enables us to classify 32,342
buildings in Los Angeles with an expected precision of
75%. By the way, this is a very nice example of the bal-
ancing effect of information-optimality. As long as one
class is dominant (in the beginning, this was the com-
mercial class) it helps to focus on the less dominant
class. But, when you cross a point where you lose too
much performance for the commercial class, it starts
doing the reverse. Table 4 lists the final performance
measures for the ensembles studied in this section in
comparison to selected members including the best in-
dividual residential precision (BIRP) given by Multi-
nomial Naïve Bayes with smallest smoothing param-
eter, the highest residential F1 (HRF1) given also by
Multinomial Naïve Bayes, but with the largest smooth-
ing parameter. In addition, we give ensembles with ba-
sic model averaging (AVE), with averaging based on
the expected F1 score (AVE-F1). Each of those is also
given with an information-optimal abstaining variant
(*-A).

This family of final classifiers provides different trade-
offs for the given problem. While the best individ-
ual residential precision classifier (BIRP) is a very
good general classifier, it suffers from a high abstain-
ing rate of 54%. Similarly, the best individual clas-
sifier measured using the F1 score on the test set
(HRF1) is abstaining in 58% of the cases. Building
ensembles through averaging, however, increases the
support of the classifier significantly. In summary, all
of those classifiers perform very good irrespective of
the weighting scheme. The precision of the residen-
tial class is in the range of 73% -75% while the recall
ranges from 37% to 52%. It turns out that an averaged
ensemble with weights given by the F1 score presents a
good general candidate. It is worth noting that though
the table does not show abstaining rates for the aver-
aged ensembles that do not abstain in the ensembling
step, the individual models of the ensemble are all ab-
staining. It is an interesting coincidence that applying
information-optimal abstaining also to the ensemble is

bringing the ensembles into the same working region
reducing the impact of the actual weighting.

5 Conclusion and Future Work

With the work in this paper, we have shown that social
media text actually contains information about build-
ing functions. However, it is very difficult to spot and
advanced techniques like abstaining are needed in or-
der to remove the many text messages that are simply
unrelated to the nearest building of their occurrence.
Without such techniques, all models trained to high
performance, but did not generalize at all. However,
this lack in generalization is not so much related to the
models not learning something, but rather to the fact
that forcing a classification of unrelated tweets results
in random choices and significantly influences perfor-
mance.

We were able to construct a diverse set of models
through abstaining and model blending. Some of them
have high precision, but classify only few instances at
all, others have lower precision, yet better recall.

Given the absolute numbers, however, we can also con-
clude that social media text alone is not sufficient to
understand building functions. Though we never ex-
pected this, it is an important fact to know when con-
sidering data fusion. In the future, we plan to study so-
cial media text in the context of data fusion with satel-
lite data, mainly Landsat and Sentinel. An interesting
area of research is about techniques that combat spatial
overfitting. While it was possible for Los Angeles to
find a spatial split such that both parts of the city have
similar settlement patterns, this is not true for many
other cities. Therefore, novel techniques for sampling
need to be developed and applied in order to prevent
spatial overfitting and to predict performance of clas-
sifiers on unseen data. Due to some local aspects of
language, however, we might actually want to allow
some spatial overfitting. This leads to questions of how
global ensembles can be constructed and evaluated that
can deal with all languages of the world and reliably
aid in the building classification task on a global scale.

In addition, advanced ensembling methods like boost-
ing or stacking can be taken into account, though av-



eraging is known to work surprisingly well in many
small-data situations. In fact, the boosting or stack-
ing steps might increase the risk of overfitting as they
are implicitly consuming additional data. We think that
this additional held-out data is possibly better invested
in finding the abstaining parameters or training the un-
derlying models.

6 Data and Software Availability

The source code is accessible via:
https://github.com/mwernerds/agile21_abstaining
under MIT license, respectively some files are made
public under BSD license.

Social media data cannot be made accessible due to
GDPR and Twitter license regulations. Open Street
Map data exported under ODbL 1.0 License from.
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