AtlasHDF: An Efficient Big Data Framework for GeoAl

Martin Werner
Professorship of Big Geospatial Data Management,
Technical University of Munich
Munich, Germany
martin.werner@tum.de

ABSTRACT

The last decade witnesses a fast development in geospatial appli-
cation of artificial intelligence (GeoAlI). However, due to the mis-
alignment with wider computer science progresses, the geospatial
community, for a long time, keeps working with powerful and
over-sophisticated tools and software, whose functionality goes far
beyond the actual basic need of GeoAl tasks. This fact, to a certain
extent, hinders our steps towards establishing future sustainable
and replicable GeoAl models. In this paper, we aim to address this
challenge by introducing an efficient big data framework based
on the modern HDF5 technology, called AtlasHDF, in which we
designed lossless data mappings (immediate mapping and analysis-
ready mapping) from OpenStreetMap (OSM) vector data into a
single HDF5 data container to facilitate fast and flexible GeoAI
applications learnt from OSM data. Since the HDF5 is included as
a default dependency in most GeoAl and high performance com-
puting (HPC) environments, the proposed AtlasHDF provides a
cross-platformm and single-techonology solution of handling het-
erogeneous big geodata for GeoAl. As a case study, we conducted
a comparative analysis of the AtlasHDF framework with three
commonly-used data formats (i.e., PBF, Shapefile and GeoPackage)
using the latest OSM data from the city of Berlin (Germany), then
elaborated on the advantages of each data format w.r.t file size,
querying, rending, dependency, data extendability. Given a wide
range of GeoAl tasks that can potentially benefit from our frame-
work, our future work will focus on extending the framework to
heterogeneous big geodata (vector and raster) to support seamless
and fast data integration without any geospatial software depen-
dency until the training stage of GeoAl A reference implementation
of the framework developed in this paper is provided to the public
at: https://github.com/tumbgd/hdf4water.

CCS CONCEPTS

« Information systems — Geographic information systems; «
Computing methdologies — Artificial intelligence; - Theory
of computation — Data compression.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

BigSpatial’22, November 01, 2022, Seattle, WA, USA

© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9531-1/22/11...$15.00
https://doi.org/10.1145/3557917.3567615

Hao Li
Professorship of Big Geospatial Data Management,
Technical University of Munich
Munich, Germany
hao_bgd.li@tum.de

KEYWORDS

GeoAl, Hierarchical Data Format, Immediate mapping, Big Data,
OpenStreetMap

ACM Reference Format:

Martin Werner and Hao Li. 2022. AtlasHDF: An Efficient Big Data Frame-
work for GeoAl In The 10th ACM SIGSPATIAL International Workshop
on Analytics for Big Geospatial Data (BigSpatial °22) (BigSpatial *22), No-
vember 1, 2022, Seattle, WA, USA. ACM, New York, NY, USA, 7 pages.
https://doi.org/10.1145/3557917.3567615

1 INTRODUCTION

Modern methods of data analysis including data mining, machine
learning, and artificial intelligence have made significant progress
over the last decades. While there has been a significant amount of
time where the progress was most visible in the computer vision
and natural language processing domain (e.g., convolutional neural
networks), geospatial application of artificial intelligence (GeoAI)
has seen a rising interest in the last years [5] though the intersection
of Al and geographical information systems (GIS) has a rather long
history back to 1990s [7, 10].

Due to the special needs and as well due to some misalignment
with the wider computer science progress, the geospatial commu-
nity, however, keeps working with quite complex and powerful
tools whose functionality goes way beyond the need of basic GeoAl
projects.

For instance, the Copernicus program offers a globally strategic
remote sensing (RS) data acquisition scheme, where the RS imagery
was provided in a fixed grid system [2] and as a ZIP file in which
many individual GeoTIFF files provide meaningful geospatial infor-
mation. However, the grid is kept constant and new products are
generated even in cases where the satellite just “touches” the spa-
tial footprint of such a pre-defined geospatial object. Furthermore,
the collection of data in a ZIP file can fail in supporting random
access such that applications that rely only on a subset of the pro-
vided information can easily query the exact imagery patch that is
needed.

Furthermore, for good reasons, the optical products from the
Sentinel-2 mission are generated, processed and provided in varying
map projections in order to keep distortions manageable. Though
this is effective for the data generation, from a cartography per-
spective, this practice results in a common limitation, since in any
large-scale mapping project, one needs to reproject almost all data
files into another given map projection. Although such data formats
makes sense from a precise geographic and geodetic perspective, it
puts a difficult-to-manage burden for swift and fine-scale GeoAl ap-
plications, such as object detection or land-cover-land-use (LULC)
classification, where all the advantages of aforementioned sensing
techniques are hindered to a great extent [11].

http://crossmark.crossref.org/dialog/?doi=10.1145%2F3557917.3567615&domain=pdf&date_stamp=2022-11-03

BigSpatial’22, November 01, 2022, Seattle, WA, USA

But the consequence of the current geospatial big data landscape
is that all GeoAlI applications either transform data into the pre-
ferred representation of the computer vision domain (e.g., folders of
PNG files) with a significant loss in terms of metadata and quality,
or they use the preferred geospatial domain representation like Geo-
TIFF for holding sub-patches of RS imagery ready to be fed to deep
neural networks for training [12]. While the latter keeps metadata
information intact and does not immediately imply data loss, it puts
a strong burden on the researchers and data scientists in a situation
that they have to deal with huge and powerful environments such
as GDAL and all dependencies it relies on. This means intensive and
time-consuming manual work in practice, as most pre-configured
and maintained deep learning (DL) environments (e.g., NVIDIA’s
DL container registry, TensorFlow or PyTorch project docker con-
tainer) are missing these libraries and their dependencies.

To take a step back and rethink from the opposite perspective to
this issue, all of these pre-configured DL environments have many
things in common, one of which is often overlooked in terms of its
potentials: all reasonable Al environments bring Hierarchical Data
Format 5 (HDF5) [4] support as a default dependency.

It is worthy to note for those that are not familiar with HDF5
that it is a widely-adopted technology in industry, such that al-
most all supercomputing systems have decent support for it. For
example, the basic implementation of HDF5 includes parallel IO
support for supercomputers through the MPI-IO interface, some-
thing that would have to be implemented with considerable efforts
for other environments. This is especially important when global or
time-series oriented GeoAlI tasked are considered, where the data
footprint can reach multiple petabytes easily.

Moreover, all the developments of this paper are possible with
any decent group-based data infrastructure, for instance the ZARR
project (https://github.com/zarr-developers/zarr-python) which is
more like a clone of HDF5 written in modern languages. People
should have a close look at both, because they provide virtually
the same set of functions whereas HDF5 has a wider adoption
in industry and is pre-installed in all relevant DL environments
whereas ZARR comes as a “modern” implementation of the same
functionality and might, therefore, can be easier to modify and to
fully understand.

In this context, this paper introduces an efficient big data frame-
work, namely AtlasHDF, in which we define lossless data mappings
from OpenStreetMap (OSM) into HDFS5 files to facilitate fast and
flexible GeoAI models learnt from OSM data. The concept is called
AtlasHDF as an HDF file now resembles the concept of an atlas: a
book in which each page can show a different map in a different
projection, but still, the user can access all the information without
caring about the projections with the user’s eyes.

With this setup, we demonstrate that there is a quite simple
possibility to close the domain gap between spatial computing and
GIScience relying a lot on historic data formats and bundling of
data and metadata with modern machine learning in which most
problems are processed in terms of only technical specifications
such as pixel sizes or tile sizes. Further, we note that the existence
and accessibility of geospatial metadata inside the HDF containers
can allow to easily include some spatial methodology into deep
learning-centric software, which is one of the prerequisites of future
sustainable and replicable GeoAl To demonstrate the advantage

Martin Werner, Hao Li.

of our framework, we present the design of AtlasHDF framework
with a case study of representing OSM data in an analysis-ready for-
mat for different GeoAlI applications, where we report preliminary
results and findings in the city of Berlin, Germany.

A reference implementation of the developments of this paper
is provided to the public at https://github.com/tumbgd/hdf4water
which is supported from the National Research Data Infrastruc-
ture for the Geospatial Sciences (NFDI4Earth) (see https://www.
nfdi4earth.de/).

2 THE ATLASHDF REPRESENTATION OF
OPENSTREETMAP

OSM is a high-value and large database of volunteered geographic
information following a very special way of data modeling opti-
mized for very low barriers for contributors. In a nutshell, the data
model defines three types: nodes, ways, and relations. Each of these
have a unique integer identifier, hereafter called OSM Ids, and can
have an arbitrary number of tags associated following a key-value
pattern. In addition to these attributes, nodes contain information
on coordinates given as latitude and longitude in EPSG:4326, ways
contain ordered sequences of nodes typically modeling linestrings
and parts thereof, and relations can contain ordered sequences of
multiple ways to model polygons consisting of one outer ring and
zero or more inner rings (e.g., holes in the polygons). Note that the
meaning of nodes, ways, and relations can only be understood from
the set of attributes such that relations are not always modeling
polygons, they are also used to bind together elements of other
semantic relation.

The semantics have been defined first by the main purpose of
OSM: to generate a usable world map. Best practice in terms of
tag usage combined with the default style file for the cartographic
rendering have established a best practice of how entities are repre-
sented in order to get the right appearance on the map. For example,
buildings are polygons tagged with something with a key "building".
Lots of buildings contain building="yes", but in some areas of the
world, you will also find building="residential" as a more detailed
information. The expectation should, however, be that data quality
of OSM is mainly defined by the cartographic use [1].

The following subsections explain our approach to transforming
native OSM data into data that can be used without dependencies to
special software from the OSM community or the GIS community.
The advantage of HDFS5 is that it is already a default dependency
in all major deep learning frameworks like TensorFlow or PyTorch
which themselves rely on HDF5 to store weights and model infor-
mation.

2.1 Immediate Mapping of OpenStreetMap Data

As a first step, we read an OSM file in the protocol buffer format
which provides us with an ordered stream of OSM objects of the
classes node, way, or relation. Whenever objects are modeled by
referring to other objects, this reference is made using the globally
unique OSM Id. In traditional OSM software (look at, for example,
the osmosis library), this leads to a two-phase parsing: in a first
phase, objects of interest are found (e.g., all buildings) and in a

AtlasHDF: An Efficient Big Data Framework for GeoAl

OpenStreetMap
.pbf
(Immediate Mapping in .hS \
| nodes ways relations I
| OSM_ID (uint64) OSM_ID (uint64) OSM_ID (uint64) I
; ; |
| | ways_attr (json) | relat_attr (json) I
| $
\ | nodes_attr (json) | | ways_ref (string) | relat_ref (string) | I
~— 7

BigSpatial’22, November 01, 2022, Seattle, WA, USA

GeoAl
/ —————— ———— —————— —
(Analytic-Ready Mapping in .h5 \
Delaunay-
| Tri i
n/w/r PSS n/w/r
random - XA ZSXT - n/w/r_attr (geometry)
access | OSM_ID (uint64) SIS J OSM_ID (uint64) + wir_refs (string)
access, S . &

I
I
I
\

Wwir_attr (geometry) R*-Tree w/t
wir_refs (string) % Start_ID (uint64)
n_coords (double) End_ID (uint64)

n_coords (double) I

Figure 1: The overview of AtlasHDF4Water, which consists of two main modules: (1) Inmediate mapping of OSM data

representation; (2) Analysis-ready Mapping for GeoAl

second phase, all references are resolved. In order to avoid this two-
phase parsing, our immediate mapping provides random access to
tables of ways, nodes, and relations by their OSM IDs.

This is accomplished rather straightforward following the para-
digm of a column store: we create a data table for all OSM IDs. This
is small enough to be held in main memory even for the planet,
hence, this is expected to be indexed in main memory. For each
row of this column, the same row of another column table holds
coordinate information and a third column holds attributes. That
is, we have a primary key column holding OSM IDs expected to
be held in main memory for quick access and we have multiple
tables of the same number of rows mapping by the row index to
the OSM Id. That is, the k-th row of the ID column, the k-th row of
the coordinates table, and the k-th row of the attributes table make
up each OSM object.

Spelling this out for N nodes, M ways and O relations, the three
classes provides the schema for the immediate mapping given in
Table 1.

This mapping of OSM is called immediate mapping as we just
replace the data containers and representations with HDF5 and
JSON for usage of built-in facilities.

2.2 Analysis-Ready Mapping of OpenStreetMap
Data

The immediate mapping is a generic representation of OSM data in
which the use of standard data representations like JSON allows
intuitive access to the raw data. But the pointer-intensive modeling
of OpenStreetMap data in which a polygon resolves to multiple
linestrings which themselves resolve to multiple points leads to
challenging demand for random access. In fact, this heavy use of
references in data modeling is excellent for enforcing consistency
(moving a point in this representation moves it for all entities
derived from this point), but as soon as the data is considered
immutable, one can do better. Our mapping shall facilitate the
following key features:

e Data read from the HDF container can be immediately used
by libraries like OpenGL or TensorFlow

e Data should be understandable by users neither experienced
with OGC Simple Features nor with the quite different ge-
ometry notions of OpenStreetMap

o Using the data shall be efficient

The following three chapters describe the decisions we took for
representing the three main geometric entities points, linestrings
and polygons in AtlasHDF.

2.2.1 Point Representation. The point representation of the imme-
diate mapping already fulfills all our requirements. We can material-
ize a continuous memory area holding just coordinate values. This
is compatible with important APIs such as OpenGL for visualization
or Proj for projecting points. Furthermore, numpy, TensorFlow, and
other python extensions can make use of such data without copying
using the Python Buffer Protocol which exchanges only memory
location information between different libraries while interoper-
ating instead of communicating data. Finally, when compression
is disabled, the HDFS5 libraries can provide the data mapped into
virtual memory while residing on disk such that only the kernel of
the operating system mediates between the program working on
the data and the devices the data is stored on. With chunking and
compression enabled, however, the disk utilization can be optimized
fully transparent to the application.

2.2.2 Linestrings. In order to achieve the same performance and
efficiency for the linestrings, we define the analytics-ready repre-
sentation with two tables. One table holds the coordinates avoiding
duplicate values based on a threshold distance (e.g., machine pre-
cision) and a second table consists of indices. More concretely, all
linestring coordinates are stored in a dataset linestrings_coords
with two columns. The analysis-ready linestring information is
given as a second table holding all row numbers of linestrings.
For compatibility with OpenGL, we use the highest index value
(e.g OXFFFFFFFF for unsigned integer of 32 bits) as a marker to
restart a primitive. This mapping is called the in-memory mapping
of linestrings as its efficiency depends on holding all coordinates
in main memory (or other memory suitable for efficient random
access).

BigSpatial’22, November 01, 2022, Seattle, WA, USA

Martin Werner, Hao Li.

Dataset Shape | Data Type | Map on

Semantics

/nodes (N,1) uint_64 - A table of OSM IDs for each node
/nodes_attr (N,1) string /modes | Attributes as JSON objects
/modes_coords | (N,2) double /modes | Coordinates
/ways M,1) uint_64 - A table of OSM IDs for each way

/ways_attr M,1) string /ways | Attributes as JSON objects
/ways_refs M,1) string /ways Referenced nodes as a CSV string
/relations (0,1) uint_64 - A table of OSM IDs for each way
/relations_attr | (O,1) string /relations | Attributes as JSON objects
/relations_refs | (O,1) string /relations | A JSON object referring to OSM objects mentioning

their role like inner or outer ring of polygon

Table 1: The Schema of the OSM Immediate Mapping

As an alternative, especially for big data situations where not all
corodinates can be held in main memory, we omit the index table
entirely and store coordinates in the order of their occurence in
linestirngs.

Then, linestrings are modeled indirectly by storing the start
and end index of each linestring. More concretely, the linestring
information is given as a second table of shape (M,2) holding the
start and end index of each line string. In this way, materializing a
single (or multiple consecutive) linestring is a serial read operation
without reading unused data.

This model is called the consecutive mapping and is preferred for
parallel applications due to avoiding the need for materializing all
coordinates or random access over the table of coordinates. The
redundancy of repeated coordinates does not play a big role in this
case.

2.2.3 Polygon Representation. An analysis-ready mapping of poly-
gons to HDF containers is very challenging. First of all, polygons
according to the OGC Simple Feature Specification contain one
outer ring and zero or more inner rings with a handful of con-
straints disallowing problematic cases. For example, inner rings
have to lie within the outer ring. OGC defines multiplygons just as
multiple polygons.

For the polygons, we face a more challenging problem: a polygon
contains one outer ring of a variable number of points and zero
or more inner rings of a variable number of points. Mapping this
to an efficient memory representation is not possible as the mul-
tiple levels of variability in length leads to a per-item processing
which is neither compatible with pipelines nor directly supported
by HDF5. In this context, we propose to replace all polygons (e.g.,
general polygons with/without holes) with just simple polygons
(e.g., polygons without holes). This is always possible and efficient
algorithms for such a task are known. Again, this is not ideal for
modeling, but simplifies data analytics as now each polygon is mod-
eled as a linestring internally. That is, the same representation as
the one designed for linestrings can now be used for polygons.

As a final step, we propose to add a triangulated data structure
optionally. You might have noticed that the previous construction
turns a two-times variable-length data structure into a one-time
variable length data structure. If the significant increase in the num-
ber of objects is tolerable, we propose to triangulate all polygons
(but maybe not mapping attributes to the resulting many triangles)

and to store these triangles in a six-column dataspace. In this rep-
resentation, hardware acceleration of rendering becomes very easy
as OpenGL can use these buffers directly.

As a summary, we can say that the AtlasHDF immediate map-
ping is augmented with additional columns for fast and memory-
contiguous access to linestrings. By replacing polygons with multi-
ple simple polygons, the linestring technique can be extended to
polygons finalizing the representation.

2.3 Querying and Visualizing OpenStreetMap
Data in AtlasHDF

Querying OSM can now be implemented in any technology that
is suitable including, but not limited to state-of-the-art in-memory
R*-tree implementations, out-of-memory R-trees embedded into
the HDF5 file, JSON queries based on the JQ query language, or
JSON queries based on a small python function which given a JSON
object as a string returns True or False depending on whether or
not the element is relevant.

Due to the column store nature, three type of queries can be
distinguished: (1) queries involving only spatial information (e.g.,
using the coords fields), (2) queries involving only attribute infor-
mation (e.g., relying only on the attribute tables), and (3) mixed
queries. For all queries, due to the strict column store model, the
query result will be a set of integers describing the row numbers.

If this query result is sorted by row number, it is very easy to
materialize search results as a consequence of HDF5 providing
reading for any set of rows that are monotonously ordered. Hence,
in python, a simple slicing on the file data spaces can be used. It is
worth noting that query results can be stored easily in the HDF5
file itself as a table of integers.

For the purpose of this paper, it is sufficient to understand that
a single scan over the data can be used to implement all types of
queries by giving the rows one after another (or in parallel) to a
predicate function. We give more details on query implementation
and optimization in Section 2.4.

For visualization, the coordinate tables can be immediately ma-
terialized to main memory and transmitted to GPU memory such
that OpenGL can use them directly in functions like glDrawPrimi-
tives. After materializing the coordinate arrays, advanced OpenGL
techniques such as “Primitive Restart” can be used and allow for
further compression of the geometry data, which is then beyond

AtlasHDF: An Efficient Big Data Framework for GeoAl

the scope of this single paper. Herein, we focus on the potential
computational cost of querying and visualizing OSM data in At-
lasHDF, and a detailed analysis of the cost of converting OSM data
into AtlasHDF format will be included in future works.

2.4 An AtlasHDF Query for GeoAl Target
Objects

As a demonstration, we show how one can implement - based on
the aforementioned AtlasHDF data representation, a subsetting
operation which queries OSM features relevant for GeoAlI applica-
tion, for instance automatic surface water mapping with OSM and
Sentinel-2 satellite data [6]. Herein, a foremost important while
computational-expensive step is to generate training labels for
GeoAl by combining surface water vector data from OSM and mul-
tispectral satellite raster imagery from Sentinel-2. More specifically,
we will have many patches of satellite data, which is straightfor-
ward as HDF5 provide efficient data presentation of all kinds of
satellite imagery as raster-based datasets, from a range of differ-
ent areas of interest. In this context, the actual challenge is how
to conduct an efficient and customized (e.g., surface water) query
over the OSM vector data representation without including a long
list of package dependencies (e.g., GDAL, osmosis, Overpass). In
AtlasHDF, we decide to first compute the query towards the Surface
water attributes and materialize this query then as an ordered set
of indices. In a second step, for each of these indices, a minimum
bounding box is computed and stored as a map to the query result.
An in-memory R-tree will give us quick access to spatial subsets of
the interesting features (e.g., lakes, rivers, ponds) in terms of the
indices in the original dataset of relevant primitives. In this way,
queries can be very efficiently computed on-the-fly.

For such an attribute query, we provide a very simple imple-
mentation showing the gain of the given approach. Without any
requirements beyond HDF5 (which is implicitly available when us-
ing TensorFlow or PyTorch for GeoAl applications), we implement
a kernel as follows:

Define the query

def is_water(x):
obj = json.loads(x)
JQ query on key/value
[---]

return ("water" in obj)

vpredicate = np.vectorize (is_street)
Next, we map it over the HDF5 attributes as follows:

Create query indices
query_indices = vpredicate(attributes)
.nonzero ()[0]

Finally, the result can be realized in main memory immediately
using the slicing features of HDF5:

Materialize only relevant

Isi = f["osm"]["linestrings_idx "]
[query_indices ,:]

Store indices into water

BigSpatial’22, November 01, 2022, Seattle, WA, USA

f["osm"].create_dataset (" water_idx",1si)

Now, the new dataset “water_idx” contains indices into the
shared point array, which can be later combined with satellite
image patches to generate GeoAl training labels. In principle, it
is also possible to compactify the dataset now by creating a new
pair of point data with index data, but for our application, it is
not worth it due to the excellent performance of HDF5 managing
partial datasets.

3 CASE STUDY

3.1 Preliminary Result

OSM data is licensed under the Open Database License (ODbL), thus
is freely available in vector format comprising mainly point features
as nodes, polyline features as ways and relations, and polygon
features as ways and relations [8]. There are various existing data
formats applied in OSM community, among which the following
three types are considered to be commonly used:

Protocolbuffer Binary Format (PBF) - As a preliminary for-
mat, OSM data is stored in a low-level encoded PBF file (.osm.pbf),
which was designed as an alternative to the XML format to support
extensibility and flexibility. The advantages of distributing OSM
data in PBF is also intuitive, as it needs only half of the size and 5
times faster to write comparing to a gzipped planet. Though ran-
dom access is available at the "file-block" level, it can be difficult
to work directly with OSM data in PBF for GeoAl applications.
Mostly, one relies on open-source software packages for parsing
or converting OSM data in PBF format into another vector for-
mat or a spatial database for further analysis, such as Osmium,
osm-read, Osm4j, etc. The latest OSM .pdf file can be assessed at
https://planet.osm.org/pbf/.

ESRI Shapefile (shp) - Unlike the PBF, the shp format is a
dedicated geospatial vector data format designed by ESRI for GIS
software. OSM data is storied as primitive geometric shapes (e.g.,
points, lines, and polygons) together with their associated attributes.
In this context, OSM data stored in shp format can be much easier to
work with in combination with other geospatial data (e.g., satellite
imagery) for diverse GeoAl applications. However, the term "shape-
file" by default refers to a collection of files (i.e., .shp, .shx, and
.dbf) to make it complete for storage and distribution. In addition,
it is important to notice that storing topological information is not
supported in the shp format, therefore one may end up with diffi-
cult cases such as inner polygons and mixed shape types. Another
limitation of OSM data in shp lies in the fact that each component
files (i.e., .shp, .shx, and .dbf) could not be bigger than 2GB, which
refers to roughly 70 million points.

GeoPackage (gpkg) - The gpkg is based on an extended SQLite
3 database file specifically for geospatial data, thus supports both
raster and vector data at the same time. In fact, the proposed At-
lasHDF data representation shares a similar idea of open-source
and platform-independent data container (raw data and metadata)
with the gpkg format. Moreover, OSM vector data storied in the
gpkg format can be packaged into a single file without size limits.
Though the gpkg can be extended by creating spatial indexes to
speed up intensive spatial queries compared to traditional OSM
data format (PBF and shp), it still lacks the capacity of fast random
accessing and effective handling of geometric issues (e.g., inner

BigSpatial’22, November 01, 2022, Seattle, WA, USA

Martin Werner, Hao Li.

Table 2: Comparative analysis of selected data representations of OSM data in Berlin.

Representation ~ Structure Size Files Querying Rendering QueryDependency Extendable Raster-Support Ready-GeoAl
PBF Encoded 67.7 (MB) 1 X X - X X X
Shapefile Geometry 3615 (MB) 91 Slow Slow GDAL, PostgreSQL, HDF5, etc v X X
Geopackage Container 287.3 (MB) 1 Medium Slow GDAL, PostgreSQL, HDF5, etc v 4 X
AtlasHDF Container 637.5 (MB) 1 Fast Fast HDF5 v v v

polygons), which poses new challenges coming to advanced GeoAl
applications.

To demonstrate the advantage of OSM data representation in
AtlasHDF, we conducted a comparative analysis in the city of Berlin,
Germany. More specifically, we downloaded the latest .osm.pbf
file for Berlin from the Geofabrik download server, then mapped
the OSM data into AtlasHDF format (Table 1), which resulted in
more than 7 million points and 0.9 million linestrings in Berlin.
Figure 2 shows an OpenGL-ready GUI (DSLAB) in materializing
OSM geometries with immediate mapping into main memory, then
rendering them via OpenGL drawing functions with GPU memory.
Herein, the rendering for around 8 million geometries is about 200
fps with a common gaming GPU. Moreover, the powerful aspect
is that AtlasHDF can load the whole OSM data for Berlin into
visualizable forms within 2 seconds from the hard drive.

DSLAB-based Data Science Demonstrator. x

File Rendering DataEngine Help

———nitialization

= L oading linestrings from

T atiashdf._implementation
// =‘//:,‘/netena/bemn.ns
7 2

S =with a total of
D ey =
\f\ e ~—7421068points

=7 \\Qt/ 4
\\/”\’@%ii\\iié
= \F\\§

TS

Figure 2: The interface of rendering OSM data stored in At-
lasHDF with an OpenGL-ready GUI (DSLAB).

Besides the aforementioned features of different date formats
used in the OSM community, we parsed the latest OSM data of
Berlin into three common formats (i.e., PBF, Shapefile, and GeoPack-
age), and compared their storage sizes as well as file numbers. In this
context, Table 2 elaborates on the main features of three common
formats and our proposed AtlasHDF by focusing on their capability
of handling intensive data queries and integrating with raster-based
satellite data for GeoAlI applications. One can notice the following
key findings:

e Both GeoPackage and AtlasHDF store OSM in data contain-
ers, thus leads to a single file, which can be a big advantage
to more than 90 files in Shapefile. Though PBF has also just a

single file, OSM data is structured in low-level encoded data,
which hinders direct querying and rendering over the data.
Given the fact that Shapefile skips the topological relations
between geometries, intensive queries can be relatively slower
than other container-based format. However, the querying
with GeoPackage is still suboptimal as its missing feature of
data random access. This is also the reason that AtlasHDF
can support fast rendering than other data formats.
Regarding data extendability, Shapefile can only support
vector data extension, while GeoPackage and AtlasHDF can
support both raster and vector data.

Last but not the least, the proposed AtlasHDF format has the
most concise dependency of only HDF5, which is even a built-
in dependency of GDAL and more importantly in modern DL
libraries (e.g., TensorFlow and PyTorch), which are mostly
used in building GeoAI models. This unique feature of the
AtlasHDF data representation make it ready for a wide range
of GeoAl applications.

3.2 Towards Facilitating GeoAI Applications

Due to the development of big data and crowdsourcing technology,
OSM has recently become a promising source of massive, free train-
ing labels together with rich and detailed semantic information for
the emerging GeoAl applications, ranging from automatic surface
water mapping [6], Open LULC classification [9] to 3D city mod-
elling (e.g., via estimating OSM building height) [3], as shown in
Figure 3. According to the specific task, it is possible and intuitive
to extend the existing AtlasHDF data framework and map required
geospatial data, such as satellite imagery, environmental data, and
point clouds data, into a similar analysis-ready format within a
single AtlasHDF data container.

In this context, the excellent features of querying and rending (as
shown in Table 2) of AtlasHDF would be even more helpful when
scaling up the GeoAI model globally. Therefore, the lessons learned
in this paper could encourage future work in this direction of closing
the gap between intensive training data preparation and large-scale
GeoAl model training, especially in an HPC environment.

Though stimulating GeoAlI applications were explored, one of
the major limitation of harvesting OSM data as GeoAl training data
is still the lack of an efficient and dependency-optimized data repre-
sentation, which can be easily deployed across different platforms
and programming languages. Aiming at release this limitation, the
proposed AtlasHDF framework provides a cross-platform single-
techonology solution for GeoAlI using heterogeneous big geodata
(e.g., vector and raster) with a minimum library dependency on
only HDF5, which is usually a default dependency in reasonable Al
and HPC environments.

AtlasHDF: An Efficient Big Data Framework for GeoAl

Figure 3: GeoAl applications that can benefit from
the AtlasHDF data representation. (a) Automatic sur-
face water mapping; (b) Open LULC classification; (c) 3D
city modelling by estimating OSM building height (i.e.,
https://osmbuildings.org/).

4 CONCLUSION

In this paper, we proposed an efficient and single-technonolgy data
framework for storing, processing, and querying big geospatial
data, namely AtlasHDF, in which we define lossless data mapping
from OpenStreetMap vector data into HDF5 files to empower fast
and flexible GeoAl applications. The framework takes advantage
of the modern HDF5 technology and the concept of data container
to first conducted an immediate mapping of the OSM data into
main memory and support random access in feature-level; then
we designed an analysis-ready mapping for three main geometric
entities (points, linestrings, and polygons) of OSM data and make
the data ready for GeoAl applications. Moreover, we elaborated on
the advantage of our AtlasHDF framework regarding data querying
and visualizing, as well as from an implementation perspective,
regarding the existing dependences in modern DL libraries (e.g.,
TensorFlow and PyTorch).

As a case study, we selected the city of Berlin (Germany) and
downloaded the latest OSM data from the Geofabrik server, we
then compared the AtlasHDF implementation with three common
data formats used by OSM community, specifically Protocolbuffer
Binary Format (PBF), ESRI Shapefile (shp), and GeoPackage (gpkg),
by evaluating their corresponding features w.r.t size, file number,
querying, rending, dependency, and data extendability. Based on our
findings in the comparison, we discussed the potential applications

BigSpatial’22, November 01, 2022, Seattle, WA, USA

of GeoAl model learnt from OSM data, which can benefit from
our AtlasHDF framework. In future, more comparative analysis
will be conducted to further examine the benefits of AtlasHDF
w.r.t storage, scalability, efficiency, especially when extending the
proposed AtlasHDF to a global OSM dataset.

This paper sheds a light into closing the domain gap of spatial
computing and GIScience communities relying on sub-optimal data
formats and over-complex software dependencies with a cross-
platform and single-technology solution based on HDF5. In future
research endeavours, we plan to extend the AtlasHDF framework
by including more types of heterogeneous big geodata (both vector
and raster) so that different GeoAl models can be trained without
any geospatial software dependency until the training stage of
the GeoAl This will allow for fast, immediate adoption of new
updates from the AI community and increases the ability to re-
use infrastructures (e.g., implementations from papers that come
from a non-spatial community) without the cumbersome need of
“spatializing” them by installing all missing dependencies and even
compiling some geoprocessing scripts.

ACKNOWLEDGMENTS

We acknowledge the support from NFDI Consortium Earth System
Sciences (NFDI4Earth), which is funded by Deutsche Forschungs-
gemeinschaft (DFG), project number: 460036893.

REFERENCES

[1] Christopher Barron, Pascal Neis, and Alexander Zipf. 2014. A comprehensive
framework for intrinsic OpenStreetMap quality analysis. Transactions in GIS 18,
6 (2014), 877-895.

Yves-Louis Desnos, Maurice Borgeaud, Mark Doherty, Michael Rast, and Volker

Liebig. 2014. The European Space Agency’s Earth Observation Program. IEEE

Geoscience and Remote Sensing Magazine 2, 2 (2014), 37-46. https://doi.org/10.

1109/MGRS.2014.2319270

[3] Hongchao Fan, Gefei Kong, and Chaoquan Zhang. 2021. An Interactive platform
for low-cost 3D building modeling from VGI data using convolutional neural
network. Big Earth Data 5, 1 (2021), 49-65.

[4] Mike Folk, Gerd Heber, Quincey Koziol, Elena Pourmal, and Dana Robinson. 2011.
An Overview of the HDF5 Technology Suite and Its Applications. In Proceedings
of the EDBT/ICDT 2011 Workshop on Array Databases (Uppsala, Sweden) (AD
’11). Association for Computing Machinery, New York, NY, USA, 36-47. https:
//doi.org/10.1145/1966895.1966900

[5] Krzysztof Janowicz, Song Gao, Grant McKenzie, Yingjie Hu, and Budhendra
Bhaduri. 2020. GeoAl: spatially explicit artificial intelligence techniques for
geographic knowledge discovery and beyond. , 625-636 pages.

[6] Hao Li, Johannes Zech, Christina Ludwig, Sascha Fendrich, Aurelie Shapiro,

Michael Schultz, and Alexander Zipf. 2021. Automatic mapping of national

surface water with OpenStreetMap and Sentinel-2 MSI data using deep learning.

International Journal of Applied Earth Observation and Geoinformation 104 (2021),

102571. https://doi.org/10.1016/j.jag.2021.102571

Stan Openshaw and Christine Openshaw. 1997. Artificial intelligence in geography.

John Wiley & Sons, Inc.

[8] OpenStreetMap Wiki. 2020. Elements — OpenStreetMap Wiki,. https:

//wiki.openstreetmap.org/w/index.php?title=Elements&oldid=2056268 [Online;

accessed 24-July-2022.

Michael Schultz, Janek Voss, Michael Auer, Sarah Carter, and Alexander Zipf.

2017. Open land cover from OpenStreetMap and remote sensing. International

Journal of Applied Earth Observation and Geoinformation 63 (2017), 206-213.

https://doi.org/10.1016/j.jag.2017.07.014

Terence R Smith. 1984. Artificial intelligence and its applicability to geographical

problem solving. The Professional Geographer 36, 2 (1984), 147-158.

Martin Werner. 2021. GloBiMapsAI: An Al-Enhanced Probabilistic Data Structure

for Global Raster Datasets. ACM Transactions on Spatial Algorithms and Systems

7,4 (2021), 1-24.

[12] Martin Werner, Gabriel Dax, and Moritz Laass. 2021. Computational challenges

for artificial intelligence and machine learning in environmental research. IN-
FORMATIK 2020 (2021).

[2

7

[

[10

[11

