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Abstract—Within the scope of an ESA funded activity, Airbus
Defence and Space GmbH completed a research and development
study in order to provide a novel dataset to ESA and develop
a flight-ready system for on-board anomaly detection. This
work includes the extraction of satellite telemetry data, the
identification of anomalies, the development of machine learning
models and the flight-ready system and finally the deployment
of the machine learning algorithms via hardware acceleration.
We present the benchmarking results of three accelerated ML
algorithms from within the final flight-ready system.

Index Terms—Machine learning, anomaly detection, FPGA,
PUS, co-processor, on-board AI

I. INTRODUCTION

Being operated mostly remotely, spacecrafts need to be
highly reliable systems, which achieve the desired mission
outcome despite potential failures. For this purpose, a Failure
Detection, Isolation and Recovery (FDIR) strategy is em-
ployed, with the goal of fulfilling the specified mission target
of reliability, availability, maintainability and operational au-
tonomy. In order to notice non-nominal behavior, all identified
feared events should be observable and necessary observations
need to be included in the monitored telemetry. To this end, a
key design parameter is the rate at which telemetries need to be
recorded and reported. The most common approach to detect
potential anomalies is to examine whether design limits for
any instruments, modules and subsystems are crossed. These
are referred to as out-of-limits (OOL) events and once such
an event is recognized, the satellite safe mode is entered. The
anomalies presented in this paper showed signs of an anomaly
months before the OOL limits were crossed. Furthermore, with
the rise of data-driven machine learning (ML) approaches to
anomaly detection, an automatic observation system can be
designed, which continuously processes telemetry to identify
potential anomalies based on the telemetry behavior regardless
of OOL limits. Besides detection, this can allow isolation
of affected telemetry parameters, depending on the model
in use. Accordingly, there have been several initiatives to
explore the viability of ML-based anomaly detection, as well
as other applications for ML in the space domain. In this
paper, we present two machine learning models for anomaly
detection, which have been integrated into a flight-ready
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system via hardware acceleration. Thereby, a design was
chosen to include a module for anomaly detection, as well
as a module for anomaly prognosis. The anomaly detection
models are trained in an unsupervised manner to predict
nominal telemetry, whereas the anomaly prognosis models
are supervised models and directly predict whether telemetry
is anomalous. For hardware acceleration, we opted to use
specialized deep learning processors, which are the Xilinx
Vitis AI Deep Learning Processor (DPU) and the Matlab
Deep Learning Processor provided by the Deep Learning HDL
toolbox. Both have been integrated into the FPGA part of
the overall hardware image. For this reason, we opted to use
a Xilinx Zynq Ultrascale+ MPSoC FPGA board and more
specifically, this was the ZCU102 evaluation kit1. This paper
is structured into a section on related work, a presentation of
the novel anomaly dataset provided to ESA, a section on the
ML algorithms and models, an overview of the flight-ready
hardware and software system and finally a presentation of
the results achieved by the ML models, both originally and
when deployed on-board.

II. RELATED WORK

For nominal telemetry, i.e. telemetry within the OOL limits,
machine learning based approaches can offer further insight
and preemptively detect anomalies. This might give the satel-
lite operations team an early warning on a deteriorating
situation and the opportunity to react in advance. To this
end, [1] employed decision trees to detect anomalies in the
data of a momentum controller on the NPP satellite, as well
as reaction wheels on the Kepler spacecraft, support vector
machines were used by [2] on anonymized data from the Soil
Moisture Active Passive Satellite (SMAP) and Mars Science
Laboratory (MSL)2. [3] represented an excerpt time series of
the BOBCAT-1 mission in the feature space of an autoencoder
model to find anomalous breakpoints, while [4] employed
an LSTM, autoencoder and variational autoencoder side-by-
side to detect anomalies. [5] and [6] utilize recurrent neural
networks and evaluate their models on the SMAP & MSL
dataset2, whereas [7] used a temporal convolutional neural
network for the same purpose. [8] also implemented a convolu-
tional neural network for detecting anomalies in data from the

1https://www.xilinx.com/products/boards-and-kits/ek-u1-zcu102-g.html
2https://github.com/khundman/telemanom
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Zhuhai-1 OVS-3A hyperspectral satellite. Lastly, [9] trained
both an attention-based network, as well as an LSTM model on
data from a spacecraft’s solar array drive and solar panel sun
sensor. While all of these papers researched different neural
network architectures for spacecraft telemetry data, all assume
an on-ground deployment scenario, or at least do not mention
how their networks would be deployed on-board. To this
end, the telemetry monitoring framework NOSTRADAMUS,
developed by CNES, uses one-class support vector machines
(OC-SVM) for anomaly detection and is currently being tested
on-board ESA’s OPSSAT within the Space Experiment for
Satellite Artificial intelligence Monitoring (SESAM) project
[10].

III. DATASET

Within the scope of the ADAP project, a new anomaly
dataset covering three different anomalies in real satellite
telemetry was used. Each contains nominal as well as anoma-
lous segments and an overview is available at the end of this
section.

A. Anomaly A: AOCS Sensor

An AOCS Pitch and Roll Sensor misbehavior, which is
leading first to a subsystem and afterwards to a system critical
anomaly with consequent transition to satellite SAFE Mode.
This anomaly was observed on other satellites in similar units
as the sensors were impacted by an external perturbation that
was unknown until it appeared. The perturbation phenomena
was created by very low temperatures on the upper atmo-
spheric layers which don’t allow the sensor to clearly detect
the transition between Earth (hot side) and Deep Space (cold
side). The perturbation phenomena was leading to an increased
noise in the pitch and roll measurements and ultimately to an
erroneous estimation of pitch and roll pointing.

B. Anomaly B: Payload Antenna Corona Discharge

Since the classical FDIR was not able to detect a unit
malfunction, the payload antenna of the satellite was damaged,
which had severe mission impact. The main problem for the
detection of this event was that, although temperatures were
indeed abruptly rising across the payload subsystem, these
were still within the temperature limit ranges of the classical
FDIR of all affected thermal lines. During nominal operations,
the payload antenna is experiencing significant temperature
variations depending on the sun illumination profile along the
satellite‘s orbital position. However, the rising temperatures
across payload components were very different from what
is expected during nominal operations. Especially the com-
binations of affected thermal lines, as well as the very steep
increase of the temperatures were very clear signs of a non-
nominal payload condition. These ultimately culminated with a
corona discharge event causing serious damage of the antenna.

C. Anomaly C: Solar Array Micro Meteoroid Degradation

This anomaly dataset contains manipulated data to simulate
the impact of a micro meteoroid on the solar array of a

TABLE I
ANOMALY DATASET

Anomaly Training set Test set Window size Channels

A 500000 50000 60 13
B 148757 8578 100 49
C 68472 9972 72 6

satellite. As known from various missions, a micro meteoroid
impact usually creates irreversible damage, causing a full
or partial outage of one of its sections. During the satellite
lifetime, the solar array currents show large variations due
to many factors, such as the mission phase (e.g. the satellite
orientation to the sun), the presence of earth or moon eclipses,
the varying solar activities over the year and last but not least
the degradation induced by the radiation. All these factors
complicate the handling of a monitoring with the classical
FDIR, especially as a power drop is just another variation
which under some circumstances is actually expected.

IV. ALGORITHMS

Machine learning models can be trained either in a super-
vised or an unsupervised fashion. For anomaly detection, this
means either directly predicting whether telemetry is anoma-
lous for supervised models, or predicting what the nominal
telemetry values would be for unsupervised models and then
comparing these to the actual telemetry. In line with [1] and
others, supervised models need to be trained with a dataset
that has an equal number of nominal and anomalous samples.
This approach represents the anomaly prognosis module of
the ADAP system and will be explored for a subset of 25000
nominal and anomalous samples each of anomaly A. For this
purpose, a 1-layer LSTM model was trained, as depicted in
Figure 1.
Since having class parity is quite a limitation in terms of
scaling the dataset size and model complexity, all other ML
models are trained in an unsupervised manner and predict
nominal telemetry only. For anomalies A and C, an autoen-
coder model containing convolutional and pooling layers was
chosen. Its architecture is displayed in Figure 2. The model
was implemented with hardware acceleration in mind and for
this reason it only incorporates layers, which are supported by
the Xilinx Vitis AI deep learning processing unit (DPU). For
anomaly B, a 2-layer LSTM model was selected in order to
forecast the next sample based on a telemetry data interval.
Its architecture is visualized in Figure 3. It was implemented
in hardware based on the processor provided by the Matlab
Deep Learning HDL toolbox.

V. HARDWARE SYSTEM

The goal of the ADAP project was to provide satellites with
a self-standing co-processor, able to autonomously process
telemetries and detect potential anomalies. This is achieved
by presenting an interface to the main processor, which is
based on PUS packets. In doing so, the main processor is able
to control the ADAP system’s high level functions, such as



Fig. 1. 1-layer LSTM prognosis model with 22,081 parameters used for
anomaly A.

Fig. 2. Autoencoder anomaly detection model containing convolutional and
pooling layers. Only layers supported by the Xilinx Vitis AI deep learning
processing unit (DPU) are used. A small version of this model with 11,293
parameters was used for anomaly A, and a version with 62,145 parameters
was used for anomaly C.

Fig. 3. 2-layer LSTM forecast model with 21,466 parameters.

TABLE II
FPGA RESOURCE UTILIZATION

Anomalies Processor DSPs BlockRAM LUTs

A & C Vitis AI 704 261 58592
B DLP 73 50 58475

A, B & C Total 777 / 2520 311 / 912 117067 / 274080
(30.8%) (34.1%) (42.7%)

TABLE III
ML PERFORMANCE FOR ANOMALY DETECTION MODELS

Anomaly Model Accuracy Precision Recall Specificity

A Prognosis 0.483 0.392 0.063 0.902
A Detection 0.825 0.881 0.752 0.899
A Quantized 0.589 0.568 0.736 0.442
A QAT 0.661 0.664 0.647 0.674
B Original 0.923 0.912 0.919 0.927
B DLP 0.81 0.725 0.933 0.708
C Original 0.999 0.999 0.999 0.999
C Quantized 0.999 0.999 0.999 0.999

TABLE IV
ON-BOARD PERFORMANCE FOR ANOMALY DETECTION MODELS

Anomaly Model Throughput Peak Delta Energy
[MB/s] [W] [W] [µJ/Bit]

A QAT 1.431 5.040 0.077 0.430
B DLP 0.505 5.221 0.007 1.325
C Quantized 6.929 5.283 0.324 0.090

booting, and initially supply all parameters required by the
machine learning algorithms. In this setting, the supervisor
runs on a real-time Cortex-R5F processor and interfaces to
the outside processor via PUS commands. It receives new
telemetries, writes them to an intermediate buffer memory
and notifies the corresponding ML application running on
a Cortex-A53 processor. Once the computation completes,
the predictions and potential anomalies are returned to the
supervisor and in case of an anomaly, they are reported back
to the outside processor. Although the supervisor acts as a
co-processor, it supports full functionality of an on-board
computer (OBC) and is able to run independently as is the
case in the experimental setup.
Furthermore, the ADAP system manages ML applications
running on the Cortex-A cores from a Xen Hypervisor. It
allows encapsulation of full operating systems, offering a way
to configure respective interfaces and manage memory access
rights. Overall, this leads to a more stable system design
[11] and it allows running different OS in parallel, such as
Petalinux and FreeRTOS. Due to the Matlab DLP requiring
access to DDR memory space for storing weights and per-
forming calculations and Petalinux likely not accounting for
this need to access memory space, interfacing to the DLP
was unsuccessful from a Petalinux OS. On the other hand,
interaction was very much possible from FreeRTOS. For this
reason, we interfaced with the Matlab DLP via a C application
writing to its registers. This was achieved from FreeRTOS
being run as a guest application in the overall Xen Hypervisor
system. By contrast, interaction with the Vitis AI processor
is possible from Petalinux only. As a result, we run both
Petalinux and FreeRTOS in parallel in the final ADAP system.
The Ultrascale+ board’s FPGA is programmed to encompass
both ML processors, reaching a total resource utilization as
specified in Table II.



VI. RESULTS

Since the overall system was described in the previous
section, only the results of the AI algorithms on-board
implementation will be presented in the following. To
judge the performance of any on-board ML algorithm, it
is important to not only compute the typical ML metrics,
such as accuracy, but to measure the power consumption
as well as throughput. To increase both power consumption
and throughput, integer quantization was performed for the
models utilizing the Xilinx Vitis AI framework.
For anomaly A, the prognosis model showed overfiting, since
the validation accuracy was significantly higher compared to
the test set accuracy. Consequently, a less complex model or
regularization could lead to better performance. The detection
model on the other hand exhibits reasonable performance
and it will be used for hardware acceleration. As can be
seen in Table III, quantization leads to a loss in accuracy,
although it is possible to recover this loss via quantization
aware training (QAT). The 2-layer LSTM model trained on
data for anomaly B retained its performance of an accuracy
of 92.3% after it was imported in Matlab, although there was
a drop-off in performance when executing it with the Matlab
DLP accelerator from within our own hardware image. This
drop-off was only observed in our own image and might be
caused by memory interference of another hardware block.
Lastly, the bigger version of the autoencoder model depicted
in 2 retained all of its accuracy after quantization. Therefore,
quantization aware training was not required.

Table IV exhibits the on-board performance of the three
hardware accelerated ML models. To put the throughput
results into context, it is important to note that the shape of a
sample is different for every anomaly, as listed in Table I. For
this reason, throughput is presented in megabytes per second.
With the model for anomaly C being five times the size of
the model for anomaly A, a significantly higher throughput is
quite surprising. This might be due to the DPU being able to
leverage its acceleration capabilities better with an increased
size of parameters. In comparison, the DLP has a smaller
overall throughput, although it was only evaluated in a config-
uration with a batch size of 1. Increasing the batch size might
yield a higher throughput. Besides, the Matlab Profiler reports
a throughput, which is 2.5 times the throughput achieved in
our system. Delta refers to the difference in average power
measured before and during the computation. Finally, energy
is calculated based on the average power measured during
the computation. This is done to judge the cost of processing
telemetry data within the full flight-ready system. Considering
the differences in throughput for anomalies A and C, it is
reasonable for the larger model of anomaly C to consume
significantly less µJ per Bit.
In these experiments, power measurement was carried out
with the shunt resistors of the ZCU102 evaluation board,
which are connected to TI INA226 power monitors. These
allow measurement of both current and voltage. The final

power measurement application closely followed this example
application provided by Xilinx3.

VII. CONCLUSION

In this work, we presented a machine learning based on-
board anomaly detection system, able to detect three distinct
anomalies. Corresponding machine learning models have been
integrated into a flight-ready system via hardware acceleration.
For this purpose, we measured the performance of our hard-
ware accelerated models achieved by utilizing the Vitis AI
framework and Matlab Deep Learning HDL toolbox respec-
tively. Contributions of this work are a novel anomaly dataset,
which has been provided to ESA, as well as a novel realization
of ML-based on-board anomaly detection for application in the
space domain.
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