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ABSTRACT
This paper presents the MLAB project, a research and development
activity funded by ESA General Support Technology Programme
under the lead of Airbus Defence and Space GmbH, with the goal
of developing a machine learning application benchmark for space
applications. First, the need for a benchmark dedicated to machine
learning applications in spacecraft is explained, and examples of ap-
plications are described including their design challenges. Then the
benchmark design is presented, including the rules of the metrics,
guidelines and scenarios for references. These scenarios include
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a description of the reference workloads that have been selected
during the activity as representative for spacecraft applications.
Lastly, the submission concept is introduced.

CCS CONCEPTS
•Hardware→ Emerging architectures; • Computing method-
ologies → Artificial intelligence; Computer vision tasks.
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1 INTRODUCTION
Satellites and other spacecrafts are an important tool for many
applications routinely used today including safe and reliable com-
munication, Earth observation, global navigation, and more. Due to
the remote operation and difficulty for ground operators to quickly
react and recover on-board failures due to limited visibility peri-
ods, autonomy is paramount. For this purpose, Machine Learning
(ML) is increasingly used in space demonstration missions, like
e.g. ESA’s phi-sat, paving the way towards its mainstream use in
Smallsats and in large institutional projects. This trend is fueled
by the use of Commercial-Off-The-Shelf (COTS) solutions and the
improvement of tools for ML deployment on radiation-tolerant
processing units[1]. For successful deployment and use of ML in
space, however, we are facing three main challenges: 1) on-board
spacecraft hardware has limited processing capabilities, algorithms
are required to be optimized for a specific embedded hardware
platform; 2) the integration into the industry workflow requires
new sets of tools and interactions between developers; and 3) the
available datasets are limited in terms of open accessibility and
re-usability for space missions, as data is either proprietary and
label availability is very limited. As a result, there is a clear need
for higher transparency and comparability of ML implementations
in the spacecraft domain, especially taking the space environment
and representative applications into account. For this reason, we
introduce the ML benchmark Machine Learning Application
Benchmark (MLAB), focused on on-board spacecraft applications.
On top of previous work discussing the benchmark concept[8], it
shall provide use cases, reference datasets, reference models, ref-
erence hardware implementations and guidelines for submission
of concrete use cases to the benchmark, which will all be made
available on the MLAB submission platform1. The remainder of the
paper is structured as follows: In section 2, we give an overview of
the benchmark. Section 3 defines rules to scenarios, submissions
and models. Reference workloads are outlined in section 4 and de-
tails of the benchmarking scripts are presented in section 5. Lastly,
the submission process is specified in section 6.

2 BENCHMARK OVERVIEW
For the benchmark, first, a particular space use case is defined in
terms of a scenario containing a description of the deployment
(batch, streaming, ad-hoc), the ML model candidate to benchmark,
and a single dataset to underpin the benchmark with workloads. In
this way, typically for a given scenario many benchmark instances
need to be run to explore the design space. In addition, each bench-
mark specifies a set of measurable requirements constraining the
design space. In this way, a benchmark can either fully fail (e.g.,
placement is impossible), fail to adhere to quality attributes (e.g.,
performance too low) or succeed within the constraints. In the
project, we are currently considering various tasks associated with
ML in space. The main focus is on vision tasks, e.g. classification
and object detection, as this area might give the highest gain in
terms of saving communication cost and energy costs on-board.
However, we are considering anomaly detection tasks as well and
the framework is deliberately open to other types of AI. In fact, it is
not even limited to Deep Neural Networks, but can be used much
1https://github.com/mwernerds/mlab-benchmark

more generic for benchmarking spacecraft hardware. The targets
for MLAB mostly consist of implementations utilizing Field Pro-
grammable Gate Arrays (FPGAs), since they can be programmed
to contain specialized processors suitable for hardware accelera-
tion of ML models. In order to immediately put new submissions
into context, we have gathered a database of datasets, models, and
benchmark results such that novel hardware aspects such as a new
system under test, a new hardware implementation of an ML algo-
rithm, or any other novel approach can be analyzed step by step
by adding required changes to established benchmarks. We gather
and organize a database of benchmark records that are successfully
prepared using a submission system. Furthermore, a submission
system is proposed as the user interfaces for the benchmark devel-
opers to provide the results of their benchmarks. Therefore, this
submission system includes a simple database for record and meta-
data keeping as well as checker scripts that aim at assessing the
satisfaction of performance requirements of a benchmark instance.

2.1 Benchmark Metrics
By analyzing the requirements of multiple scenarios and workflows
and relying on diverse model implementations on an FPGA, we
collected the following metrics for the benchmark:
Power consumption:

• Average power consumption (Watt).
• Peak power consumption (Watt)

Throughput:
• Frames per Second (FPS)
• Pixels per Second (PPS)

Energy efficiency:
• Frame/Watt
• Pixels/Watt

Accuracy:
• Accuracy (Top 1, Top N)
• IoU
• mAP

Each use case in the specification will provide the requirements
for the above metrics. Note that as frame size might change depend-
ing on the use case, units like pixel/watt are also defined.

2.2 Benchmark concept
Existing benchmarks, like MLPerf[9], rely on the use of four sep-
arate components for the development of the benchmark. These
components are System Under Test (SUT), the Load Generator
(LoadGen), a dataset, and a metric evaluation suite, and help to
generate reproducible inference experiments for benchmarking.
SUT interacts with Load Generator and Dataset components to
generate consistent inference traffic for different platforms. The
Load Generator is used to develop consistent and comparable in-
ference workloads. This includes the development of various types
of queries (e.g., multi-stream inference queries). The Metric Eval-
uation component interacts with the Load Generator and is used
to derive consistent performance metrics from the execution of
benchmarks among various platforms.
The MLAB benchmark builds upon this concept and applies it to
on-board spacecraft applications. The system under test should
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incorporate space ready hardware and at least provide a description
as to how flight-ready its software is.

3 BENCHMARK RULES
In the spirit of the state of the art MLPerf benchmarking method, we
provide a set of definitions and restrictions, which help to specify
the benchmarks:

3.1 Definition
• Sample: is the unit of data on which inference is run. E.g., a
single image.

• Query: is a set of N samples that are issued to an inference
system together. For example, a single query can contain 8
images.

• Quality: refers to a model’s ability to produce “correct” out-
puts. This ability is concretely defined for each particular
benchmark instance.

• SUT: consists of a defined set of hardware and software re-
sources that will be used for for performance/quality mea-
surements. The hardware resources may include processors,
accelerators, memories, disks, and interconnect. The soft-
ware resources may include an operating system, compilers,
libraries, and drivers that significantly influences the run-
ning time of a benchmark. In addition, we are also including
the data generation and dataset as part of SUT.

• Reference implementation: is a specific implementation
of a benchmark provided by Airbus . The reference imple-
mentation is the canonical implementation of a benchmark.

• Run: is a complete execution of a benchmark implementa-
tion on a system consisting of a complete set of inference
queries, including data pre- and post-processing, throughput,
and power consumption requirements as well as a quality
requirement in accordance with a use case.

3.2 Restrictions
Since we are mainly targeting accelerated platforms, we define
various restrictions in order to measure more directly the device
capabilities as opposed to performance features related to system
implementation strategies:

• Caching of data on the accelerator is not allowed
• Throughput is measured for the end-to-end data pipeline
• Randomness and non-determinism are restricted and only
allowed for the order of floating-point operations, traversal
of the input streams, and rounding effects.

• Reproducibility is mandatory including the restriction on
caching of data on the FPGAs

The final repository will include the full set of rules.

3.3 Benchmarking Scenarios and Use Cases
To cover the realistic inference scenarios for space applications, we
define two scenarios as described in the table 1. These scenarios
aim for performance evaluation for various HW while consider-
ing feeding the input data to the accelerator with either batches
or streaming. Each benchmark specifies a scenario to which the

submissions should adhere. The following table provides the details
of the two scenarios discussed.

In the development of the benchmark, we were mainly con-
sidering use cases in which a full FPGA is available as a payload
processor. In this situation, computer vision tasks, especially CNNs,
provide a good “challenge” to the system for which reasonable data
is available. Hence, the MLAB benchmark currently has a focus on
vision-related tasks, yet contains a few hints on other use cases. We
aim to extend the set of use cases in future work. Table 2 lists the
main use cases available in the benchmark as of now.

3.4 Open and close divisions
When providing the benchmark reference metrics with a custom
submission, different options can be chosen to implement a design.
The following options of submission to the benchmark have been
defined and they specify whether change in either the model or
hardware configuration is allowed:

• Hardware Open & Model Open
• Hardware Close & Model Open
• Hardware Open & Model Closed
• Hardware Closed & Model Closed

While all these cases have relevance, we mainly focus on cases
where the benchmark is closed with respect to the model: Pre-
processing, post-processing and the model have to be equivalent to
the reference implementation. This allows more straightforward
hardware evaluation with less configuration noise from the models
side.

3.4.1 Open Hardware & Open Model. In this case, also called open
submission, only the use case and the dataset is specified. The
submitter can choose to showcase any kind of performance opti-
mization, but can use the reference use cases as baseline for the
design.

3.4.2 Open Hardware & Closed Model. In this case, also called
closed model submission, the hardware and inference implemen-
tation (e.g. accelerator IP) is modified keeping the same neural
network model. This allows showcasing the advantages of one
processing architecture against the other, and is relevant in a sys-
tem design scenario where for example the model is fixed because
already optimized or coming from another company or team. In
general this use of the benchmark is also relevant to benchmark
the capabilities of hardware in terms of quantization optimization
and similar.

3.4.3 Closed Hardware & Open Model. In this case, also called
closed hardware submission, the model is modified keeping the
same hardware platform. This demonstrates the advantages of one
model or training method against the other, and is relevant in a
system design scenario where the hardware is fixed.

3.4.4 Closed Hardware & Closed Model. In this case, also called
closed submission, a particular hardware platform, as well as the
framework, compiler, deployment, and runtime environment, are
specified. This is necessary to be able to compare different hardware
platforms in terms of neural network inference capabilites with
fairness in the implementation.
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Table 1: Query Scenarios

Scenario Query Generation Min. # of queries Samples per query Min. duration Min. # of runs
Stream Continuous data stream 1024 queries 1 120 seconds 10
Batch Batch-wise data stream 1024 queries 1024 120 seconds 10

Table 2: MLAB use cases & References

# Use case Reference Model Reference Dataset Reference Training Reference Inference
A Anomaly Detection Light LSTM NASA Anomaly Matlab Matlab
B Radio Classification ResNet 1d RadioML Tensorflow Vitis AI
C Multispectral Object Detection VGG Fire Detection Tensorflow Vitis AI
D Image Classification Heavy DenseNet161 EuroSAT Tensorflow Vitis AI
E Image Classification Light MobileNet Airbus Ship Small Pytorch FINN
F Image Object Detection YOLO Airbus Airplane Darknet Vitis AI
G Image Segmentation ResNet-50 Airbus Ship Masks Tensorflow Vitis AI

3.5 Model Rules
For the closed model division, MLAB provides a reference imple-
mentation of each benchmark. The benchmark implementation
must use a model that is equivalent, as defined in these rules, to the
model used in the reference implementation. For the open model
division, the benchmark implementation may use a different model
to perform the same task. Retraining is allowed.

3.5.1 Quantization. For the closed model division, MLAB will pro-
vide trained weights and biases in fp32 format for both the reference
and alternative implementations. In addition, a calibration dataset
will be published for each model. Submitters may do arbitrary
purely mathematical, reproducible quantization using only the cali-
bration data andweight and bias tensors from the benchmark owner
provided model to any numerical format that achieves the desired
quality. The quantization method must be publicly described at a
level where it could be reproduced. Calibration is allowed and must
only use the calibration dataset provided by the benchmark owner.
Submitters may choose to use only a subset of the calibration data
set. Additionally, MLAB may provide an INT8 reference for some
models to increase comparability of this widely-used quantization
size related to the availablitiy of fast elements (e.g., multipliers,
memory access, ...) based on this bit size or multiples thereof in
modern FPGAs. Model weights and input activations are scaled
per tensor, and must preserve the same shape modulo padding.
Convolution layers are allowed to be in either NCHW or NHWC
format. No other retraining is allowed. For the closed and open
division, weights and biases must be initialized to the same values
for each run, any quantization scheme is allowed that achieves the
desired quality.

4 REFERENCEWORKLOADS
This section defines the content of a reference workload of a use
case and presents an overview of reference datasets and models.
Referenceworkloads serve the purpose to demonstrate a benchmark
implementation and provide results for comparison. All reference
implementations provided by Airbus Defence and Space GmbH

will utilize the Xilinx Zynq Ultrascale+ MPSoc ZCU102 evaluation
kit2. It allows a wide range of HW designs, while being a target
platform for the hardware acceleration frameworks of Xilinx Vitis
AI, Xilinx FINN and the Matlab Deep Learning HDL toolbox. Each
use case has a reference workload, which consists of:

• Reference model, selected from literature
• Reference dataset, open source with pre-processing scripts
• Reference training, on one of the frameworks
• Reference inference, on one of the frameworks
• Reference hardware, all references on ZCU102

4.1 Use Case A: Anomaly Detection Light
Nominal values for a multivariate timeseries of satellite telemetry
will be predicted[5]. All metrics for power consumption, throughput
and energy efficiency are applicable. Accuracy will be measured in
line with a binary classification task (nominal or anomalous) on
every value of a sample.

• Reference Dataset: The NASA Anomaly dataset contains
labeled telemetry from the Mars Science Laboratory rover,
Curiosity (MSL) and the Soil Moisture Active Passive satellite
(SMAP)3

• Reference Model: In line with [5], a LSTM model will be
used, with hardware acceleration provided by the Matlab
Deep Learning HDL toolbox

• Target Metrics: Accuracy > 80%, Power
• Query Scenarios: Batch

4.2 Use Case B: Radio Classification
This use case comprises the prediction of which modulation is used
on a given signal, based on its vector-like representation of the IQ
plane[7].

• Reference Dataset: Open RadioML Synthetic Benchmark
Dataset4

2https://www.xilinx.com/products/boards-and-kits/ek-u1-zcu102-g.html
3https://github.com/khundman/telemanom
4https://github.com/radioML
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• Reference Model: ResNet 1d model[2], which will be accel-
erated via the Vitis AI framework

• Target Metrics: Accuracy > 50%, Throughput
• Query Scenarios: Batch

4.3 Use Case C: Multispectral Object Detection
In the context of AI-assisted computation in space, object detection
tasks have great importance, as they can potentially serve as one
of the critical building blocks in many applications. For this use
case the detection of wildfires based on optical images is proposed.
Images contain landmass-area infested by fires, as well as smoke
formations and pixel-level masks should delimit the fire area. Ac-
curacy will be measured as a binary object detection task of fire /
no fire, with any overlap of bounding box and segmentation label
mask being enough for a true positive.

• Reference Dataset: OroraTech Wildfire Dataset containing
11347 optical images from Sentinel satellites, labeled on pixel
level5

• ReferenceModel: VGG16 models have been shown to work
for the task of wildfire detection[6]. The model predicts
bounding boxes based on optical images. It was selected
for its ease of use within Vitis AI

• Target Metrics: Accuracy > 90%, Throughput
• Query Scenarios: Batch

4.4 Use Case D: Image Classification Heavy
In this use case some "heavy" models are evaluated that reach high
performance measures, but suffer from high resource utilization
and complex training implying the need for large datasets.

• Reference Dataset: The EuroSAT dataset is composed of
aerial image tiles showing varying land-use classes in RGB
colors as well as in 13 multispectral bands with resolutions
varying between 10m, 20m and 60m. It contains 27,000 geo-
referenced images from Sentintel 2, with a size of 256x256
pixels. Each image is associated with one out of ten classes6

• Reference Model: DenseNet161 model[4] considering only
3 out of 16 channels for every image in the EuroSAT dataset.
This model was selected as a reference as it fits the image
classification heavy use case due to its size, while still being
suitable for acceleration with Vitis AI

• Target Metrics: Accuracy > 90%, Throughput
• Query Scenarios: Batch

4.5 Use Case E: Image Classification Light
This use case involves only a single class, meaning that the algo-
rithm needs to decide whether a specific object is in the image or not.
With the goal of a smaller memory footprint, a lower classification
accuracy is acceptable.

• Reference Dataset: Part of the Airbus Ship Detection Chal-
lenge, adapted for a binary classification task7

• Reference Model: MobileNet model[3] with hardware ac-
celeration planned via the FINN framework

• Target Metrics: Accuracy > 80%, Power
5https://ororatech.com/
6https://github.com/phelber/EuroSAT
7 https://www.kaggle.com/c/airbus-ship-detection

• Query Scenarios: Batch

4.6 Use Case F: Image Object Detection
As a second object detection use case, the detection of aircrafts
based on optical images is chosen. Accuracy will be measured via
average precision (AP).

• Reference Dataset: The Airbus Aircraft Detection dataset
is a demonstration of a larger dataset created from Airbus
HRS imagery8

• Reference Model: YOLO model[10] for airplane detection
and on-board inference via Vitis AI

• Target Metrics: Accuracy > 90%, Throughput
• Query Scenarios: Batch

4.7 Use Case G: Image Segmentation
Image segmentation has the goal to cluster parts of an image to-
gether which belong to the same class. As one of the more demand-
ing algorithms in terms of neural networks for image processing,
it is picked to showcase the performance of ship segmentation
on optical images. For measuring accuracy, we will rely on the
intersection over union (IoU) metric.

• ReferenceDataset: Airbus ShipDetection Challenge dataset
with segmentation label masks7

• Reference Model: ResNet-50 model[2] containing a zero-
padding layer, which constitutes an operation that is not
supported by the Vitis AI DPU and needs to be accounted
for during deployment

• Target Metrics: Accuracy > 60%, Power
• Query Scenarios: Batch

5 BENCHMARKING SCRIPTS FOR
REFERENCE IMPLEMENTATIONS AND SUTS
(ZCU102)

According to the rules set in the benchmarking section, the algo-
rithms are tested for performance under different perspectives. The
base dimensions for the benchmarking are:

• Accuracy
• Timing
• Power Consumption

From the dimensions above the following can be derived:

• Accelerator execution time
• Accelerator throughput
• Inference Energy
• Accelerator/Model energy efficiency

5.1 Accuracy
Whereas the computation of the accuracy metric for classification
tasks is trivial, it is more complex for the image segmentation cases.
The accuracy in the image segmentation cases is computed by
averaging the IoU score across all the images composing the batch.

8https://www.kaggle.com/datasets/airbusgeo/airbus-aircrafts-sample-dataset
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5.2 Timing
The timing of the algorithm comprises the operations required to
adapt the data for the algorithm, feed it to the accelerator, perform
the computations in the accelerator and return the results of the
operations.

5.3 Power Consumption
To measure the power consumption, the Maxim PM-Bus is sampled
at constant intervals. The values sampled from the power-rails are
grouped in the following categories:

• PL Power
• PS Power
• MGMT Power

Since all video drivers and codecs of the board are not utilized, the
MGMT power reading shows only idle-state currents, which are
negligible.

5.4 Accelerator execution time
The execution time of operations in the accelerator is obtained
either by means of the VAI-Trace profiler, which is able to provide
execution times down to operation level for DPU-compiled code,
or by utilizing PL the power-consumption rising and setting flanks
as delimiters. Vitis-AI allows for the first approach, the lack of a
profiler for FINN only allows the second approach.

5.5 Accelerator throughput
The throughput of the accelerator is computed by dividing the
accelerator execution time by the size in bit of the batch.

5.6 Inference Energy
The inference energy is computed by performing a trapezoidal
numeric integral on the power-consumption profile. The limits
of the numeric integral are the rising and setting flanks of the
accelerator power consumption. The energy measurement contains
the both the PS and PL power, as PS operations are needed for PL
scheduling.

5.7 Accelerator/model energy efficiency
The accelerator energy efficiency, is computed for every model
by dividing the inference energy by the size of the batch in bit.
The latter gives insights about overheads, inner workings, and
optimizations of the accelerator.

6 BENCHMARK SUBMISSION PROCEDURE
We define a submission as the preparation of code, scripts, measure-
ments and summaries for a particular benchmark scenario and use
case. Each submission is bound to a particular hardware platform,
compiler and deployment software. Currently, the reference imple-
mentations are prepared for ZCU102 platform. However, we encour-
age the submission of other platforms and systems. Therefore we
prepared an instruction to help developers preparing submissions.
This instruction, includes the following steps:

• Check the existing scenarios and use cases
• Prepare reproducibility materials
• Structure the evaluation metrics

• Verify submission requirements
• Pull request and final submission

7 CONCLUSION
In this paper, we present the current status of the MLAB benchmark
system for space applications. Based on a selected set of publicly
available use cases for on-board processing, we derive a proper
set of metrics and a benchmarking protocol tailored to on-board
inference in space. The standardized workloads and performance
metrics together with a growing range of documented use cases
and reference implementations for real platforms provide system
engineers with a framework to place evaluated decisions during
system specification in terms of hardware selection, software frame-
work benchmarking, and model design. In addition, the benchmark
helps hardware designers to assess their hardware in the context
of satellite-based workloads. Finally, it provides a means of under-
standing to the machine learning community how real-world appli-
cation performance diverges from the current evaluation scheme
only focusing on peak dataset performance in this community. To
keep the benchmark in line with existing on-board processing ap-
plications, we continue working on improving the coverage and
diversity of the benchmark use cases and are hoping that this activ-
ity will simplify the integration of machine learning aspects into
future space missions.
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