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ABSTRACT

To query and localize objects of interest among massive and multi-modality big
geospatial data (BGD) is fundamental in spatial data science and Earth system
science (ESS). However, the effective and efficient searching among an extensive
collection of geospatial data (e.g., global satellite imagery) for interesting pat-
terns can be challenging, often requiring domain-specific prior knowledge (i.e.,
training labels) and intensive computational resources. Towards addressing this
challenge, we introduce GIMI, a geographical generalizable image-to-image neu-
ral search engine that extends the cluster hypothesis from information retrieval
theory - closely associated documents tend to be relevant to the same requests -
to geospatial data. We explicitly integrate geo-location information into the con-
trastive learning of image embeddings via a general distance-penalized triplet loss.
On this basis, GIMI is designed to support a wide range of search queries, includ-
ing embedding-based similar search and spatial-constrained nearest neighborhood
search. As a case study, we select the task of post-disaster damage building search
to demonstrate the general idea behind GIMI and evaluate its model performance
in a critical real-world searching scenario. Experiments show that GIMI achieves
promising searching performance, w.r.t accuracy and efficiency, in selected areas
affected by the 2023 Kahramanmaraş Earthquake in Turkey.

1 INTRODUCTION

Earth Observation (EO) via Remote sensing (RS) is one of the most fascinating and fast-growing
techniques for collecting big geospatial data (BGD). More recently, it has become possible to gather
multiple sensor modalities (e.g., high-resolution aerial images, multi- and hyperspectral images,
Radar data, etc.) (Hong et al., 2023) to observe the Earth’s surface from space at an unprecedented
scale and frequency. These EO data form the backbone of state-of-the-art environmental and Earth
System Science (ESS) research and the investigation of global challenges such as climate change,
urbanization, and natural disasters.

However, the increasing resolution, quality, number of observations, coverage, and the amount of
RS imagery that is being generated, all together posing pressing needs on how to search and mine
large collections of EO data effectively and efficiently for interesting patterns. In this context, not
only does one need to know where to look to find objects of interest, but also what model to use for
different searching tasks. What if prior efforts had already created models on similar tasks but in
another geographical study? Numerous downstream applications become possible if we can make
large RS data collections searchable by content, metadata, and analytic tasks (Cavallaro et al., 2021;
Li et al., 2023a).
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Neural search, as an emerging resaerch field in information retrieval, has significantly influences the
development of modern searching systems via leveraging neural network (NN) models to extract
non-trivial and cross-domain data representations, so-called embeddings, to support multimodal
searching purposed (e.g., text, image, video, audio). Different from traditional search engines, which
rely on keyword matching or other heuristics to retrieve relevant objects, neural search models, es-
pecially transformer-based architectures, showed revolutionary performance and speed by encoding
the “query” and “corpus” representations in a high-dimensional vector embedding space, allow-
ing for more nuanced and robust searching results based on their semantic similarity (Gordo et al.,
2016; Karpukhin et al., 2020). More recently, the popularity of neural search has been boosted by
the availability of pre-trained Large Language Models (LLM), such as BERT and ChatGPT, with
a living and inestimable impact on the entire philosophy behind multimodal data search.

However, adapting existing neural search engines to geographical data and geospatial analysis tasks
is not trivial. One major challenge is the generalizability of pre-trained models, which can degrade
fast when scaling up to different geographical areas, from regional to global scales (Li et al., 2022).
In this context, this performance decrease phenomenon can be formulated as the “Geographical
Generalizability” issue of AI models (Li et al., 2023b), which follows the terminology of ”Repli-
cability across Space” (Goodchild & Li, 2021). Fortunately, recent works seek to address this issue
via explicitly feeding models with intuitions for spatial or spatio-temporal information, with so-
called geographic priors (e.g., latitude and longitude, or geographical context) (Tang et al., 2015;
Mac Aodha et al., 2019; Mai et al., 2020; Yang et al., 2022; Mai et al., 2023b), in order to improve
the model’s“Geographical Generalizability” and ensure more robust and consistent model perfor-
mance. More recently, the potential of explicit location encoding has been intensively studied via
self-supervised contrastive learning with diverse image analytic tasks (Mai et al., 2023a; Rußwurm
et al., 2023; Klemmer et al., 2023; Hong et al., 2024; Cepeda et al., 2023). However, the implication
of location-explicit embeddings for a geographically generalizable neural search of RS images re-
mains a question mark. Inspired by early works in this direction, we aim to fill the research gap by
integrating location information into an image-to-image neural search engine via a novel contrastive
learning loss. Herein, we explicitly consider different distance measures and the implication of their
map projection errors in a potential global location encoding scenario.

Figure 1: Overview of GIMI. (a) the image and location-explicit embedding module, which is fea-
tured with the proposed Distance-penalized Triplet Loss based on various geographical distance
measures; (b) the image-to-image search module, which supports both Embedding-based Nearest
Neighbors Searching and customized spatial index building.

In this work, we introduce GIMI, a geographical generalizable image-to-image neural search engine,
which learns high-dimensional vector embeddings from geo-locations and image representations by
explicitly integrating different geographical distance measures into a contrastive learning objective.
Based on learned embeddings, GIMI allows for flexible similarity search with a predefined, cus-
tomized index, such as a spatial index (e.g., Quada-tree or R*-tree), using K-Nearest Neighbors
(KNN) algorithms. We evaluate the performance of GIMI in a real-world critical task of searching
for damaged buildings after the 2023 Kahramanmaraş Earthquake in Turkey using Very High Reso-
lution (VHR) satellite imagery. Experiment results confirm the effectiveness and efficiency of GIMI
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over traditional image classification approaches while significantly reducing the overhead of model
retraining and boosting the inferencing speed.

2 METHODOLOGY

Given a list of geographical images as X = {(xi, Ii)|i = 1, . . . ,m}, where xi = (λi, ϕi) is
the geographical location (with latitude and longitude) and Ii represent the image feature space.
Furthermore, we define the pre-trained image encoder f() as a high-dimensional nonlinear function
f(Ii,θ) : RH×W×C → RD, which is parameterized by θ and would map the input image feature
space (i.e., spatial-spectral dimension of H ×W ×C) into a vector embedding representation of D
dimension. To inject location-specific knowledge into image embeddings, we fine-tune the image
encoder with triplets of image tiles on a classification task, where each triplet Ti consists of an
anchor image ta, a positive image tp that is believed similar to ta, and a negative image tn that is
dissimilar.

Following the cluster hypothesis that ”closely associated documents tend to be relevant to the same
requests” (Voorhees, 1985), the most common approach of contrastive learning is to simultaneously
minimize the Euclidean distance between the embeddings of the anchor ta and the positive image
tp while maximizing the distance to the negative tn. However, this common approach does not
consider the geographical location (i.e., xi for triplet Ti) into the embedding learning process.
Herein, we assume that the influence of different positive and negative samples may differ when
spatially clustered or co-located. To this end, we proposed a general Distance-Penalized Triplet
(DPT) loss function by extending the origin idea with a customized geographical distance term. So
to say, for each triple Ti = {ta, tp, tn} and the geographical location (with latitude and longitude)
xi, the distance-penalized triplet loss can be calculated as follows:

LDPT = [||f(ta)− f(tp)||2 − ||f(ta)− f(tn)||2 + P (xi) + a]+ (1)

Where f() is an off-the-shelf pre-trained image encoder (e.g., ResNet 50 or ViT base) whose param-
eter θ will be fine-tuned. To prevent the encoder from pushing the negative image without limitation,
a rectifier term with margin m is introduced to keep the maximum distance between the anchor and
negative smaller than m. Moreover, we define P () as a customized distance function based on the
geographical locations xi = {xa, xp, xn} of the triplet {ta, tp, tn}, which are normalized among
all triplets. This will lead to an additional penalization term by explicitly considering the real-world
geographical distance among anchors, positives, and negatives in the embedding space. Specifically,
the distance penalization term is defined as:

P (xa, xp, xn) = q(xa, xp) + q(xa, xn)− q(xp, xn) (2)

Where q() can be any geographical distance measures, such as projected (e.g., Euclidean and Man-
hattan) or geodetic (e.g., “Great-circle distance”) distances. The key idea is to penalize triplets that
are geographically close to each other and pay more attention to those geographically distinct train-
ing samples (both positive and negative). Therefore, the DPT loss can embed triplet locations as
static before the training, which is thus free from the gradient vanishing problem. The map projec-
tion theory applies here to support a flexible and sophisticated distance modeling on the surface of
the Earth (Grafarend & Krumm, 2014). More specifically, one needs to account for the planar ap-
proximation distance with distinct Tissot’s indicatrix (Laskowski, 1989) across the global, similar
to Mai et al. (2023b); Rußwurm et al. (2023). Based on exact map projection and geodetic datum,
one can consider the following distance penalization with GIMI:

• Spherical Earth Distance: q(xi, xj) = R
√
(△ϕ)2 + (cos(ϕm)△λ)2, where △ϕ = ϕi −

ϕj and △λ = λi−λj are in radians. R and ϕm refer to the radius of the EARTH and mean
latitude, respectively

• Ellipsoidal Earth Distance: q(xi, xj) =
√

(M(ϕm)△ϕ)2 + (N(ϕm)cos(ϕm)△λ)2,
where M and N are the meridional and its perpendicular (”normal”). See more details
about Ellipsoidal projection in Grafarend & Krumm (2014)
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For the long term, we anticipate a significant impact of different distance measures on the DPT loss,
especially when considering global scale pre-training and fine-tuning, where the effect of Tissot’s
indicatrix will play a substantial role. One intuitive example is that one meter (e.g., in the same
projected coordinate system) in Greenland and Singapore will mean a completely different distance,
which can easily destroy a global pretraining objective.

3 DATA AND EXPERIMENT

As a case study, we select the city of Adiyaman in Turkey (of 29.9 km2), which has been severely
affected by the 2023 Kahramanmaraş Earthquake in Turkey. We obtained VHR satellite imagery
before and after the earthquake from the Pléiades 1A and 1B satellites as part of the open data
supported by ITU-CSCRS 1, Turkey. In addition, 1456 geo-tagged images in three categories (i.e.,
594 -collapsed building, 594 -healthy building and 268 -non-building) have been manually labeled
as our search base following a train and test ratio of 0.2.

To evaluate the effectiveness of GIMI, we adopt two distinct pretrained encoder architecture, namely
ResNet-18 (He et al., 2015) and ViT-B-16 (Dosovitskiy et al., 2021) pretrained on ImageNet1K V1
(Russakovsky et al., 2015)). Then, we examine three distinct embeddings with the plain embedding
from the pretrained base encoder: 1) Softmax embeddings using the cross-entropy loss; 2) Con-
trastive embeddings using a normal Triplet loss; 3) Contrastive embeddings using the DPT loss.
Next, we pass query images through the image and location embedding models to get a fixed-length
vector representation of each image. Then, we calculate K-Nearest-Neighbors in the embedding
feature space and sort them according to their cosine similarity. Lastly, the search results are pre-
sented by a ranking list (or heatmap) together with similarity scores of all searching candidates.

Table 1: Comparison of GIMI’s embeddings for damage building search.
Encoder Method Fine-tuned Top 5% (%) NDCG at 5% Top 10% (%) NDCG at 10%

ResNet Base ✗ 68.97 ± 19.87 0.908 ± 0.081 66.30 ± 17.29 0.912 ± 0.072
Softmax ✓ 92.22 ± 23.19 0.985 ± 0.055 91.68 ± 23.44 0.974 ± 0.084
Triplet Loss ✓ 94.06 ± 17.24 0.982 ± 0.060 94.11 ± 14.65 0.985 ± 0.048
DPT Loss ✓ 94.03 ± 17.61 0.983 ± 0.062 95.32 ± 13.24 0.987 ± 0.048

ViT Base ✗ 67.39 ± 13.83 0.921 ± 0.059 61.21 ± 10.99 0.907 ± 0.053
Softmax ✓ 93.46 ± 15.49 0.982 ± 0.055 91.50 ± 17.95 0.977 ± 0.069
Triplet Loss ✓ 96.09 ± 12.00 0.990 ± 0.035 93.97 ± 13.81 0.988 ± 0.040
DPT Loss ✓ 98.04 ± 5.63 0.995 ± 0.015 96.96 ± 7.07 0.993 ± 0.024

Table 1 reports the preliminary results from our case study, where we compare different settings of
GIMI, each using 500 bootstrapped query images, and calculate the average accuracy of the Top
5% and Top 10% searching results. In addition, the average Normalized Discounted Cumulative
Gain (NDCG) with a binary relevance score is calculated at Top 5% and Top 10% positions (Wang
et al., 2013). Two findings are important here: first, contrastive embeddings, especially using the
DPT Loss, outperforms classic deep features (both Softmax and Triplet Loss) and leads to superior
accuracy and NDCG; second, GIMI with ViT yields the best performance which allows further
extension via global-scale representative learning approaches in e.g.,Mai et al. (2023a); Rußwurm
et al. (2023).

4 DISCUSSION AND CONCLUSION

Fast and accurate retrieval of satellite images (i.e., Image-to-Image search) from massive EO data
archive emerges as a substantial task, especially under a disaster mapping scenario, where speed
and accuracy are counted by human lives. Multiple challenges and needs are entangled herein,
thus requiring an integrated solution to simultaneously ensure the model’s accuracy, speed, and
geographical generalizability. In this context, GIMI is the first kind of such image-to-image search
engine designed especially for geographical applications, which contribute to existing methods for
image classification and retrieval of EO data from a novel perspective. Our future work will focus
on 1) extending the Distance-Penalized Triplet (DPT) loss into a self-supervised approach at a

1https://web.cscrs.itu.edu.tr/kahramanmaras-earthquakes/
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global scale; 2) benchmarking scalable searching methods, such as Faiss (Douze et al., 2024) and
ScaNN (Guo et al., 2020), with GIMI embeddings; (3) validating the geographical generalizable
GIMI. We are looking forward to a broad application of GIMI and its variations in real-world and
critical mapping scenarios.
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