
Auto-Regressive RF Synchronization Using
Deep-Learning

Michael Petry∗,† , Student Member, IEEE, Benjamin Parlier∗,‡ , Andreas Koch∗,† , Martin Werner†
∗Airbus Defence and Space GmbH, †Technical University of Munich, ‡RWTH Aachen

Abstract—This work presents a novel pilot-less Deep-Learning-
based synchronization mechanism that seamlessly integrates
within state-of-the-art auto-encoder-based end-to-end commu-
nication systems. By re-using the idea of Radio Transformer
Networks, an auto-regressive strategy is designed that learns
to estimate and mitigate synchronization-related perturbations
for arbitrarily modulated continuous communication, i.e., sam-
ple time offset (STO) and carrier frequency offset (CFO). A
performance gain of 0.6 dB in the high-SNR regime compared to
classic synchronization techniques is demonstrated. The strength
of this approach is a shift from sample-by-sample to batch-wise
processing according to the ML paradigm, which enables efficient
and fast computation required for practical deployment scenarios
using hardware-accelerated ML inference engines.

Index Terms—RF synchronization, algorithm, auto-regressive,
machine learning, sample time offset, center frequency offset, RF
front end

I. INTRODUCTION

”Let’s assume the system is synchronized” is a phrase one
cannot avoid when educating oneself on signal processing
algorithms within the domain of wireless communication [1].
Whether it’s the subject of channel equalization, error cor-
recting codes, signal detection, or decryption, these and much
more take a synchronized system for granted. This becomes
clear when trying to operate even the simplest digital com-
munication system on real hardware. Without synchronization
nothing works in practice, while everything works flawlessly
in theory. Unarguably, synchronization is an indispensable
component of every digital communication system, and with
the introduction of Artificial Intelligence (AI) techniques into
next-generation communications systems, the issue of syn-
chronization demands to be re-explored.

Seven years ago, the hype of Machine Learning (ML)
sparked over to the RF domain [2] and resulted in a staggering
echo within the community. This resonance has manifested
itself in several ways, such as the creation of a dedicated
Emerging Technology Initiative at IEEE ComSoc [3], the
introduction of various AI/ML study items at 3GPP for
6G technologies [4], and in the creation of dedicated ML-
tailored venues1. Related research is spanning across the RF

This work is supported by the German Aerospace Center (DLR) under
project Machine Learning on Telecommunications Satellites (MaLeTeSa) with
Grant number 50 YB 2103. Corresponding author: Michael Petry (e-mail:
michael.petry@airbus.com).

1For a non-exhaustive list please see:
https://mlc.committees.comsoc.org/workshops-tutorials-symposia/.

domain, ranging from neural equalization [5] and graph NN-
based channel decoding [6] in SISO systems to advances
in cell-free Massive MIMO [7], capacity-orchestration and -
scheduling techniques [8], data-aware re-transmission [9], and
much more.

Although most research is simulation-based, recent over-
the-air communication experiments were inevitably exposed
to the issue of synchronization, which created awareness of
the algorithmic gap of ML-based synchronization strategies.

In 2016, O’Shea et al. performed the first attempt of
explicit ML-based synchronization on recorded IQ-samples by
leveraging learned attention models and appropriate domain
transformations, framed in the so-called ”Radio Transformer
Network” (RTN) [10]. However, this strategy was not targeted
for communication but for signal classification. In 2017,
Dörner et al. trained an external frame-synchronization module
based on sequence decoding to enable continuous over-the-air
transmission [11]. However, their setup is based on block-
wise auto-encoders, which is known to suffer of performance
degradation compared to its bit-wise counterpart, introduced 3
years later [12]. Other attempts exploit either preambles [13]
or carrier aggregation [12] in the OFDM modulation scheme.
Lastly, special circumstances, such as burst-wise very short
packet communication, allows successful reception despite
intentionally neglecting synchronisation mechanisms [14].

Up to date, there is a lack of ML-based strategies that solve
this issue explicitly and therefore a pillar that enables success
in conventional systems is missing. With this work we want
to give an initial impetus to strengthening this foundation.

The main contribution of this work is the proposition of
a novel ML-based auto-regressive synchronization strategy
that operates on the physical layer, is pilot-less, supports
arbitrarily-shaped modulation schemes, and integrates natively
into state-of-the-art AI-based communication systems.

This paper is structured as followed: We revisit the problem
of synchronization in Sec. II by reviewing the sources of
signal perturbation and their impact on signal integrity, and
cover popular (classic) mitigation strategies. We present our
novel AI-based synchronization mechanism as well as its
training strategy in detail in Sec. III. A first evaluation on
its performance, robustness, and competitiveness to classic
counterparts is provided in Sec. IV. Sec. V concludes this work
and hints possible algorithm improvements. This is followed
by an outlook on remaining challenges for making ML-based
synchronization practically useful.

https://orcid.org/0000-0002-8041-6246
https://orcid.org/0009-0009-2678-023X
https://orcid.org/0000-0002-1044-3142
https://orcid.org/0000-0002-6951-8022

+

Transmitted Signal Received Signal

Fig. 1. Visualization of synchronization requirements in the baseband for a 16-QAM modulated signal. Left: Transmitted signal. Right: Received Signal. Red
and blue colored lines denote the in-phase and quadrature components of the baseband signal, respectively. Center: Sample Time Offset, Constant Phase Offset,
Center Frequency Offset, and Sample Frequency Offset individually illustrated on the full signal. The insets visualize individual impacts on the constellation
diagram.

II. THE SYNCHRONIZATION PROBLEM - SOURCE, IMPACT,
AND CLASSIC MITIGATION STRATEGIES

Synchronization is of utmost importance for wireless com-
munication as it is the key-enabler that allows communication
between distant devices operating on practical, non-ideal hard-
ware. Synchronization is necessary mainly for two reasons.

Firstly, the properties of a received radio wave depend
on various environmental conditions, such as the propagation
channel and the mobility of transmitter (TX) and/or receiver
(RX) (Doppler effect). While the first effect can be mostly
compensated using filtering strategies, the Doppler effect
imposes a dynamic change in frequency and phase on the
received signal, which ultimately leads to a mismatch between
the analog RF chain and succeeding digital processing.

Secondly, due to tolerances in the manufacturing process of
analog components (e.g., local oscillator (LO), mixer, Phase-
locked loop (PLL), etc.), hardware imperfections are inevitably
present in the RF front end. On top of this, time-variance of the
components, such as the frequency dependency of the LO on
environmental conditions like temperature, or stability issues
like phase jitter, impact the transmitted and received signal
fundamentally. Together, the propagation characteristics and
hardware imperfections perturb the received IQ-samples in a
multitude of ways, which can be summarized in four critical
impacts that are explained in the following subsection.

A. Critical Signal Perturbations

Fig. 1 summarizes the four impacts. The left and right
graphs show the transmitted (ideal) and the received (per-
turbed) RF signal, respectively, using 16-QAM modulation in
baseband. The four centered graphs visualize each impact as
they accumulate from start to end of the signal in an isolated
fashion, with the insets denoting the changes observed in the

constellation diagram. The red shaded region denotes the dif-
ference between the ideal and the perturbed signal. The effects
and their origins are briefly explained in the following, ordered
from simple to hard w.r.t. mitigation strategy complexity.

a) Sample Time Offset (STO): Time offset of the RX’s
Analog-to-Digital converter’s (ADC) sampling times w.r.t. the
matched-mfiltered ”pulse-centered” IQ-samples. Static STO is
caused by the ADC’s random initial sample time and dynamic
STO is caused by a sample rate offset (see d) below).

b) Constant Phase Offset (CPO): Quasi-static phase ro-
tation within the observed IQ-samples. CPO is caused both by
the phase rotation imprinted on the signal due to propagation
distance and time, as well as by the LO’s random phase in
both TX and RX front end.

c) Center Frequency Offset (CFO): Frequency difference
between the center frequencies of the TX’s and RX’s RF
front end. CFO is primarily caused by precision tolerances
and stability issues within LOs, however, mobility scenarios
invoke the Doppler effect and directly impact signal frequency.

d) Sample Frequency Offset (SFO): Fractional mismatch
between the receiver ADC’s sample frequency and the instan-
taneous rate of received symbols. SFO has a similar origin as
CFO.

As shown in the constellation diagrams in Fig. 1, these
impacts either deteriorate signal quality severely or even
make classic signal demodulation impossible, necessitating
mitigation strategies as outline in the following.

B. Classic Synchronization Strategies

Synchronization strategies have to be individually tailored to
the specific properties of the communication system at hand,
with primary factors being the modulation type, transmit or

receive diversity (i.e., SISO or MIMO), interference consider-
ations (e.g., single/multi-user systems), and the RF front end
architecture. This has led to a vast proposal of DSP algorithms,
from which we want to recall the most popular and funda-
mental software-only algorithms (e.g., no software-controlled
in-hardware Phase-locked loops) to facilitate understanding of
the rest of this paper.

From a high-level perspective, all synchronization strategies
perform the following sub-tasks in the following or similar
order.

1) Coarse carrier frequency recovery - Correct (mean) CFO
on a large timescale to a few kHz precision to enable ac-
curate IQ-sample processing on a small timescale: Pop-
ular algorithms are the Frequency Locked Loop using
band-edge filters, which converts the residual energy in
the modulation’s excess bandwidth to a control signal, or
the ”Multiply-filter-divide” method, which recovers the
carrier frequency using a non-linear frequency multiplier
operation.

2) Symbol timing recovery - Remove time offset in sam-
pled IQ data to achieve optimal sampling positions:
Algorithms typically resemble a ”software”-PLL, such
as Mueller and Muller’s timing recovery scheme [15],
early-late or Gardner timing error detectors, and M-path
Polyphase filter banks [1]. DSP-based algorithms might
use interpolation to resolve inter-sample IQ-values.

3) Fine carrier frequency and phase recovery - Remove
dynamic small-scale CFO and unknown phase offset
to resolve ambiguity for demodulation: Closed-loop al-
gorithms like the Costas-Loop [16] utilize a feedback-
based PLL to eradicate unwanted phase offsets on a
sample-by-sample basis.

The effectiveness, computational efficiency, robustness to
dynamic behavior, and acquisition time (if applicable) of these
procedures highly depend on the selected DSP algorithms,
whose analyses are out of scope for this paper. However, var-
ious properties allow for further optimisation, e.g., increasing
spectral efficiency by removing pilot symbols or decreasing
acquisition time and enhancing robustness to abruptly occur-
ring propagation effects. To address these issues we propose a
novel ML-based synchronization procedure in the next section.

III. DL-BASED AUTO-REGRESSIVE SYNCHRONIZATION
STRATEGY

In this section we propose a novel pilot-less auto-regressive
ML-based synchronization strategy that mitigates STO, CFO,
and CPO. For simplicity we assume uni-directional continuous
communication in a SISO scenario, although generalization to
full-duplex MIMO systems is discussed in Sec. V.

The strategy exhibits three distinct characteristics:

• Batch-wise processing: To facilitate computationally ef-
ficient operation, IQ data is processed in batches to
conform with the ML paradigm. This is in contrast to
most classic algorithms as shown in Sub-sec. II-B.

D
el

ay
 E

st
im

at
e

Bi
ts

I/Q
-S

am
pl

es

[64,5]

Fine PO Correction

CF
O

 C
or

re
ct

io
n

(c
oa

rs
e)

RX I/Q Samples

[216]

FFT

[216]

MF

[216]

argmax

[1]

CFO Compensation

[216]

Re-Arrange

[256,64,5]

[64,5]

[64,1]

Reduce-Mean

[1]

Accumulator

[256,64,4]

z-2 z-2

PO Estimator

z-2
CF

O
 C

or
re

ct
io

n
(fi

ne
)

[64,4]

STO Estimator

Time

[64,1]

Reduce-Mean

[1]

Re-Arrange

[64,1]

z-1 z-1

Demapper

ST
O

-C
or

re
ct

io
n

+
 D

em
ap

pi
ng

data calculated on 1-prev. IQ

LLRs

[216]

Data-OP

I/Q
-S

am
pl

es

Bi
ts

D
el

ay
 E

st
im

at
e

I/Q
-S

am
pl

es

D
el

ay
 E

st
im

at
e

I/Q
-S

am
pl

es

Bi
ts

Available

Not Available

Complex Real

FOR EACH ... IN [256,64,5]

cu
rr

en
t '

fo
r-

ea
ch

' i
te

ra
tio

n

da
ta

 c
al

cu
la

te
d

on
 2

-p
re

v.
 IQ

t-
2

t-
3

Writing

Data availability for
current 'for-each'-iteration

t-
1

Bi
ts

D
el

ay
 E

st
im

at
e

NN-based Classic

Fig. 2. Visualisation of the data flow (left) and intermediate data availability
(right) in the receiver with ML-based synchronization.

• Pilot-less: The transmission of any form of known sym-
bols (pilots) is not required, hence, spectral efficiency
remains untouched.

• Auto-regressive information re-use: Information extracted
from previously processed data is integrated into future
processing steps.

In the following subsection we elaborate its core function-
ality, design choices, and data flow.

A. Algorithm Functionality and Data Flow

In a nutshell, the algorithm solves the sub-tasks listed in
Sub-sec. II-B in a different order using the idea of RTNs
to estimate signal properties with Neural Networks (NNs),
and integrates domain knowledge by performing signal trans-
formations with mathematical ”layers”. Fig. 2 visualizes the
individual processing steps in a graph-like manner for trans-
forming received IQ data to information bits. Data flows
from top to bottom with the grey shaded region containing
the processing pipeline for handling one batch of IQ data.
The right-aligned timeline details the availability of inferred
data from prior IQ mini-batches (explained below) w.r.t. time.
Groups of operations that perform a distinct function, e.g.,
STO compensation, are highlighted by different background
colors, while individual operations are either colored turquoise
for ML-based operations or grey for mathematical operation.
Fig. 2 assumes an IQ-batch size of 216 complex samples, a
mini-batch size of 256, and a receiver up-sampling factor of
µRX = 4. In the following we outline the implemented data
flow.

The algorithm utilizes a three-step strategy to process
an unsynchronized signal. In the first step (see light green
shaded region), a coarse CFO compensation is performed
by estimating the CFO using Fast-Fourier-Transform (FFT)
on modulation-removed input data (implemented by raising
the signal to the power of m), followed by a compensation
via a mathematical transformation. Although FFT is used for
simplicity here, convolutional neural network (CNN)-based
CFO estimation is equally applicable with similar precision.
Although not utilizing ML in this implementation, this step
can be interpreted as an RTN with a classic feature extractor.

Before the next synchronization step, the coarsely CFO-
corrected data is matched-filtered. Filtering after CFO esti-
mation has proven to result in a higher precision for coarse
CFO estimation. This is attributed to the fact that filtering of
frequency-shifted data would result in an asymmetric spectrum
w.r.t. the center frequency.

From this point on ML comes into play. The IQ-batch is
split into equisized mini-batches which are being processed
sequentially (denoted by the red shaded ”for each” loop in Fig.
2). First, the phase offset in the mini-batch is estimated via
means of ML and corrected using mathematical transforms.
Afterwards, STO is estimated and supplied to the Demap-
per, both operating using NNs. The Demapper outputs Log-
Likelihood-Ratios (LLRs) to allow further processing (e.g.,
decoding) with soft information.

B. Crucial Points of our Strategy
From an information theoretic point of view, estimation of

the phase offset solely based on IQ-data is not possible due
to the lack of knowledge on what happened to the signal
beforehand, which is classically derived from pilot symbols.
STO estimation faces a similar issue when the sampling times
are centered between two symbols, leading to an ambiguity in
whether to select the left or right symbol. To solve this issue
we apply two creative tricks:

a) Trick 1: Both Dense Neural Network (DNN)-based
estimators necessitate some kind of reference data. Providing
the originally transmitted unperturbed IQ-samples as reference
data enables both estimators to successfully learn producing
the desired quantities; however, this data is obviously not avail-
able at the receiver. A qualified substitute is required, for which
we identified the corresponding bits as an excellent alternative.
By exploiting deep neural networks, feature extraction of any
kind can be learned by pairing the received IQ-data with the
corresponding demodulated bits. Working with these unknown
bits leads to trick 2:

b) Trick 2: Although the corresponding bits are unknown
for the current processed mini-batch (otherwise the task of
communication would become redundant), they are acquired
for previous mini-batches (assuming a running system), hence,
both estimators operate on previous data, making this algo-
rithm auto-regressive2. This necessitates similarity between
adjacent mini-batches, which leads to trick 2: The crucial
point of this strategy is to split the IQ-batch into equisized
mini-batches with lengths small enough that allow assuming
a similar phase offset and STO for adjacent mini-batches.

In simpler terms, we estimate CPO and STO on previously
processed IQ-data combined with demodulated bits, and apply
corrective transforms on the current data under the assumption
of quasi-static signal characteristics.

CPO and STO are estimated symbol-wise, followed by a
combine-operation (here: mean) to enhance estimation sta-
bility. Demapping is also performed symbol-wise using the
”window” of corresponding IQ-samples (upsRX + 1 to handle
STO) together with the estimated STO. The final data is
accumulated.

The following sub-section elaborates the training strategy
for this algorithm.

C. Genie-Aided Training Strategy
Although this strategy gives rise to various hyper-parameters

and architectural data handling options that require tuning,
which includes but is not limited to IQ-batch size, mini-
batch size, estimator output handling, characteristics of RF
components, propagation properties, and mobility scenarios,
we restrict our focus on the training strategy of the NNs within
the algorithm for one selected operation environment only for
complexity reasons.

To simplify and speed-up training we utilize a genie-aided
training strategy that resolves looping over mini-batches and

2The phase estimator is additionally supplied with the STO estimated in
the previous batch, which boosts its accuracy but leads to a 2× delay.

Algorithm 1 Genie-Aided NN Training
Input: Number of Epochs E

Batch size B := 1
Num. of IQ-Symbols per Batch NI
Num. of IQ-Symbols per Mini-Batch NO
Max-Frequency Offset fCFO,max
Modulation-Order m
Training SNR SNR

Output: Trained NN
1: repeat for E Epochs
2: Initialization:

3: B ← randBinary([B,NI, NO,m])

4: τ⃗sto ← randUniform(−0.5, 0.5, [NI]) · Tsamp

5: ϕpo ← randUniform(0, 2π)

6: fcfo ← randUniform(−fCFO,max, fCFO,max)

7: S ← NN-Modulator(B) ∈ CB×NI×NO×1

8: U⃗ ← Flatten and Upsampling by µTX of S
9: De-Synchronizing TX signal:

10: for i← 0 to NI do
11: I⃗Q

sto
(i:(i+1))·NO

← U⃗(i:(i+1))·NO ⊛ grcc(t− τ⃗sto,i)

12: end for
13: Apply AWGN to set SNR:

14: I⃗Q
Noise
← I⃗Q

sto
+ CN (0, σ2)

15: I⃗QRX← I⃗Q
Noise
× ej·2π·fcfo ·⃗t+ϕpo

Receiver Procedure:
16: f̂ coarse

cfo ← argmax
f

(FFT(I⃗Q
m

RX))/m

17: I⃗Q
a
← I⃗QRX × e−j·2π·f̂ coarse

cfo

18: I⃗Q
a
← I⃗Q

a
⊛ grcc(t)

19: ϕ̂ ← EstimatePhaseOffsets(I⃗Q
a
,B, τ⃗sto)

20: for i← 0 to NI do
21: I⃗Q

b
(i:(i+1))·NO

← I⃗Q
a
(i:(i+1))·NO

× e−j·angle(ϕ̂i)

22: end for
23: τ̂ ← EstimateSampleTimeOffsets(I⃗Q

b
,B)

24: IQb ← Re-Arrange I⃗Q
b
to [B,NI, NO,m+ 1]

25: B̂ ← NN-Demodulator(IQb, τ̂)
26: lbce ← BinaryCrossEntropy-Loss(B, B̂)

27: lcustom← lbce + 5 · MSE(τ⃗sto, τ̂)

28: Update all NNs using lcustom
29: until

handling of previous data, while maintaining the algorithm’s
auto-regressive character. The training strategy is detailed in
Algorithm 1. Algorithms 2 and 3 denote the CPO and STO
estimation steps, respectively.

In summary, the algorithm is trained end-to-end within an
auto-encoder-based setup. Signal perturbations are introduced
on the transmitted IQ samples, i.e., CFO with random intensity
per epoch sampled between ±fCFO,max = 50kHz, CPO with
random initial phase per epoch, and STO with random offset

Algorithm 2 EstimatePhaseOffsets

Input: IQ-Samples I⃗Q ∈ CB·NI·NO·µTX

Bit-Tensor B ∈ {0, 1}B×NI×NO×m

Sample-Time-Offsets τ⃗sto ∈ RB×NI

Output: Estimated Phase Offsets ϕ̂ ∈ RB×NI

1: IQ ← Re-Arrange I⃗Q to [B,NI, NO, µTX + 1]
2: τ ← Repeat τ⃗sto to [B,NI, NO, 1]
3: ϕ̃ ← NN(stack IQ, B, τ) ∈ CB×NI×NO×1

4: ϕ̃0 ← ϕ̃/|ϕ̃|
5: return Mean on last 2 dim of ϕ̃

Algorithm 3 EstimateSampleTimeOffsets

Input: IQ-Samples I⃗Q ∈ RB·NI·NO·µTX

Bit-Tensor B ∈ {0, 1}B×NI×NO×m

Output: Estimated Sample Time Offsets τ̂ ∈ RB×NI

1: IQ ← Re-Arrange I⃗Q to [B,NI, NO,m+ 1]
2: τ̃ ← NN(stack IQ, B)
3: return Mean on last 2 dim of τ̃

per epoch. Phase coherency is guaranteed between epochs.
Additionally, additive white Gaussian noise with constant
Eb/N0 = 10 dB is applied. The total training time on an
NVIDIA Tesla V100 (AWS Cloud instance) for 100k epochs
is approx. 5 hours. The general training mechanism is similar
as in [17].

IV. EVALUATION

To verify functionality and performance of the proposed
algorithm we perform an extensive study which is summarized
in this section.

Fig. 3 provides BER curves of the developed system (red),
a classically synchronized pendant using techniques listed
in Sub-sec. II-B (yellow), and the theoretic baseline for a

Untrained AE with Synchronization
Trained AE with Synchronization
Classic-based Synchronization
Ideally Synchronized Baseline

Fig. 3. Bit-Error-Rate curves for the untrained AE-based system (green),
trained AE setup with AI-based synchronization (red), communication using
classic synchronization techniques (yellow), and theoretic maximum perfor-
mance for an ideally synchronized system (blue). A dynamic CFO with
fCFO,max = 50kHz and varying STO is applied.

a b
Res. CFO [Hz]: 0 0.5 2.0 5.0 7.0 10

N
N

 P
ha

se
 E

st
im

at
or

 E
rr

or
 [r

ad
]

N
N

 S
TO

 E
st

im
at

or
 E

rr
or

 [T
SA

M
P]

5%
4%
3%

2%

1%

6%

.

Fig. 4. Visualisation of (a) absolute NN-based phase estimation error and (b)
relative NN-based STO estimation error w.r.t. the RX ADC’s sampling period
as a function of residual CFO and SNR. Additionally a dynamically varying
STO is applied on the transmitted signal.

perfectly synchronized system without overhead (blue) as a
function of Eb/N0. It assumes 16-QAM-based transmission
without coding in a realistic environment (STO and CFO vary
dynamically during transmission, similarly as implemented for
NN-training). It can be seen that the classic approach exhibits
a constant performance gap of approx. 0.7 dB, while the AI-
based synchronized setup reaches a negligible gap in the high
SNR region. Nevertheless we note, that communication in the
low SNR region is error-prone due to bit error propagation
in the auto-regressive algorithm structure, as explained in the
following.

To understand the above observed behavior and provide a
more detailed analysis on the performance of the synchro-
nization algorithm and its individual components, we study
NN-based STO and CPO estimation precision as a function of
CFO intensity and SNR while applying a dynamically varying
STO. To simplify understanding we excluded the FFT-based
coarse CFO compensation from this analysis and adapted the
applied CFO range to match the residual CFO after this step.

Fig. 4(a) shows the phase estimator error, and Fig. 4(b)
shows the STO estimator error. It is evident that both esti-
mators strongly depend on both residual CFO and SNR, and
that higher CFOs necessitate higher SNRs to uphold precision,
which is intuitively expected. We could observe that when the
SNR is low, too high residual CFOs lead to mis-estimations
that fuel a chain-reaction of bit error propagation, prohibiting
further communication.

V. CONCLUSION AND FUTURE WORK

In this work we proposed, implemented, and evaluated a
novel pilot-less auto-regressive RF synchronization strategy
using Deep-Learning. By extending a state-of-the-art bit-wise
auto-encoder-based setup we demonstrated continuous unidi-
rectional communication by simulating a realistic environment,
perturbed by hardware imperfections in the RF front end and
propagation perturbations, leading to STO and CFO. Although
low-SNR communication is highly error prone due to auto-

regressive bit error propagation, we achieved a gain of approx.
0.6 dB in the high-SNR region.

Future work might consider improving this algorithm, e.g.,
by minimizing error propagation using soft information (LLRs
instead of bits) within the NN-based parameter estimators, and
extending this strategy to MIMO communication by deploying
the algorithm on every RF path by utilizing a batch-size
> 1. Although we believe that this work can serve as an
introduction to ML-based synchronization, more questions
have been raised than answered. To reach maturity some issues
remain, such as developing a start-up procedure when no prior
data is present, and extending this work by adding Sample
Frequency Offset compensation.

ACKNOWLEDGMENT

We would like to thank Marc Lichtman for his work on
PySDR and the resulting fruitful discussion.

REFERENCES

[1] f. harris, Let’s Assume the System Is Synchronized, 01 2011, pp. 311–
325.

[2] T. O’Shea and J. Hoydis, “An introduction to deep learning for the
physical layer,” IEEE Transactions on Cognitive Communications and
Networking, vol. 3, no. 4, pp. 563–575, 2017.

[3] I. C. Society, “Machine learning for communications emerging tech-
nologies initiative,” https://mlc.committees.comsoc.org/.

[4] X. Lin, “Artificial intelligence in 3gpp 5g-advanced: A survey,” 2023.
[5] W. Xu, Z. Zhong, Y. Be’ery, X. You, and C. Zhang, “Joint neural

network equalizer and decoder,” in 2018 15th International Symposium
on Wireless Communication Systems (ISWCS), 2018, pp. 1–5.

[6] S. Cammerer, J. Hoydis, F. Aoudia, and A. Keller, “Graph neural
networks for channel decoding,” 12 2022, pp. 486–491.

[7] T. T. Vu, D. T. Ngo, N. H. Tran, H. Q. Ngo, M. N. Dao, and R. H.
Middleton, “Cell-free massive mimo for wireless federated learning,”
IEEE Transactions on Wireless Communications, vol. 19, no. 10, pp.
6377–6392, 2020.

[8] H. Xing, O. Simeone, and S. Bi, “Decentralized federated learning
via sgd over wireless d2d networks,” in 2020 IEEE 21st International
Workshop on Signal Processing Advances in Wireless Communications
(SPAWC), 2020, pp. 1–5.

[9] D. Liu, G. Zhu, J. Zhang, and K. Huang, “Wireless data acquisition
for edge learning: Importance-aware retransmission,” in 2019 IEEE
20th International Workshop on Signal Processing Advances in Wireless
Communications (SPAWC), 2019, pp. 1–5.

[10] T. J. O’Shea, L. Pemula, D. Batra, and T. C. Clancy, “Radio transformer
networks: Attention models for learning to synchronize in wireless
systems,” in 2016 50th Asilomar Conference on Signals, Systems and
Computers, 2016, pp. 662–666.

[11] S. Dörner, S. Cammerer, J. Hoydis, and S. t. Brink, “Deep learning
based communication over the air,” IEEE Journal of Selected Topics in
Signal Processing, vol. 12, no. 1, pp. 132–143, 2018.

[12] S. Cammerer, F. A. Aoudia, S. Dörner, M. Stark, J. Hoydis, and S. ten
Brink, “Trainable communication systems: Concepts and prototype,”
IEEE Transactions on Communications, vol. 68, no. 9, 2020.

[13] J. Liu, K. Mei, X. Zhang, D. McLernon, D. Ma, J. Wei, and S. A. R.
Zaidi, “Fine timing and frequency synchronization for mimo-ofdm: An
extreme learning approach,” IEEE Transactions on Cognitive Commu-
nications and Networking, vol. 8, no. 2, pp. 720–732, 2022.

[14] J. Clausius, S. Dörner, S. Cammerer, and S. T. Brink, “On end-to-end
learning of joint detection and decoding for short-packet communica-
tions,” in 2022 IEEE Globecom Workshops (GC Wkshps), 2022, pp.
377–382.

[15] K. H. Mueller and M. Muller, “Timing recovery in digital synchronous
data receivers,” IEEE Trans. Commun., vol. 24, pp. 516–531, 1976.

[16] J. P. Costas, “Synchronous communications,” Proceedings of the IRE,
vol. 44, no. 12, pp. 1713–1718, 1956.

[17] M. Petry, A. Koch, and M. Werner, “Envisioning physical layer flexi-
bility through the power of machine-learning,” in 2023 IEEE Globecom
Workshops (GC Wkshps), ”in press”.

	Introduction
	The Synchronization Problem - Source, Impact, and Classic Mitigation Strategies
	Critical Signal Perturbations
	Classic Synchronization Strategies

	DL-based Auto-Regressive Synchronization Strategy
	Algorithm Functionality and Data Flow
	Crucial Points of our Strategy
	Genie-Aided Training Strategy

	Evaluation
	Conclusion and Future Work
	References

