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Abstract. Current point cloud data management systems
and formats are heavily specialized and targeted solely to-
wards visualization purposes and fail to address the di-
verse needs of progressive point cloud workflows like for
example semantic segmentation using machine learning.
We therefore propose a distributed data infrastructure for
dynamic point cloud data management that can support
interactive real-time visualization at scale while simulta-
neously serving as a platform for analytical tasks. By in-
troducing random data distribution, we show that simple
query fragmentation and efficient and effective parallelism
at scale are possible. At the same time, arbitrary queries
in space and time can be efficiently run over the infras-
tructure including query semantics which returns only a
random sample of the query results or preferred points
based on an importance dimension calculated, for exam-
ple, from a local point density information as commonly
done in point cloud visualization. To cope with the un-
known amount of user-specific attributes and to support
even multiple ways of deciding the importance of a given
point (ground point removal, coverage of space, random
subset) the system is designed to support all of them trans-
parently as multidimensional range queries backed by spa-
tial indices.
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1 Introduction

Point clouds play a vital role in the broader field of geospa-
tial information science. They represent a flexible repre-
sentation of geospatial data at scale with few semantics
constraints. Point clouds occur naturally in laser scanning,
where the distance between a sensor and an object is esti-
mated from the time of flight of a laser ray. Furthermore,
they appear in photogrammetry contexts, representing the
results of simultaneous localization and mapping (SLAM)

and photogrammetric 3D reconstruction (Wehr and Lohr,
1999; Shan and Toth, 2018; Gamba, 2020).

In recent years, sensors capable of generating point cloud
data have become ubiquitous, featured most prominently
in mobile phones, cars and drones. This widespread dis-
semination of sensors deployed on different platforms re-
sults in an increasing amount of point cloud data to man-
age and process. New use cases arise with these platforms,
and the ever-increasing spatio-temporal resolution of such
data displays novel requirements and challenges existing
solutions to store, process and visualize such data.

Point clouds can contain from a few thousand points for
example indoor scenes from ScanNet up to trillions of
points like for example the airborne laser scans of the
Netherlands (Dai et al., 2017). Furthermore, point clouds
can be sampled from complex geometric data, including
triangle meshes and polytopes, and - in contrast to simple
feature geometry - can even represent faithfully the inte-
rior of polytopes, such as in 3D scans of the human body
with CT.

Point clouds are increasing in volume, due to the recent
advancements in sensor availability, resolution, and sam-
pling rate implying an ever-increasing velocity at which
points are generated. In addition, the missing semantic in-
formation makes point clouds flexible and useful in obser-
vation and data integration but at the cost of a huge va-
riety towards data interpretation. These characteristics re-
veal that point cloud data can be viewed as big data and as
such shares common associated challenges (Lee and Kang,
2015).

Surprisingly, point cloud support in current geographic in-
formation systems remains surprisingly limited, and scal-
ability is a major difficulty for existing solutions. We want
to propose a reliable, scalable and simple architecture to
overcome this limitation as we see a demand for a point
cloud data management system that can ingest, fuse, up-
date, analyze and visualize data in real-time.
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Figure 1. Visualization of an extract of a point cloud from terrestrial laser scanning in Maastricht (AHN3), colored based on the LAS
classification attribute.

This paper presents a distributed point cloud data manage-
ment system that offers high-performance parallel range
query capabilities over spatial, temporal, and thematic di-
mensions. This opens up the possibility for interactive vi-
sualization while simultaneously serving as a source for
long-running analytical tasks that operate on random sam-
ples, like for example, point cloud segmentation or classi-
fication.

The main contributions of this paper are

e a definition of a simple and flexible distributed mid-
dleware for point cloud processing

e a data distribution and organization scheme for ef-
fective range query execution

e a thorough evaluation of data distribution schemes
for point cloud data and their impact on typical
queries from visualization and point cloud analysis

e adefinition of a randomized query semantics in which
query results are expected to be uniform samples of
the entire result set

e extensive experiments on real-world datasets for
national-scale interactive point cloud computing.

The remainder of the paper is structured as follows. Sec-
tion 2 presents the state-of-the-art from relevant literature.
Section 3 outlines the conceptual foundations. Section 4
introduces the architecture of the point cloud management
system. Section 5 evaluates selected use cases and applica-
tions of the system. Finally, Section 6 concludes the paper
by addressing open issues and future work.

2 Related Work

Current geographic information systems use data models
in which features with geometries are commonly repre-
sented as individual records. These models fail to scale
well to billions of records stored for example in a database
table or key-value store (van Oosterom et al., 2015). Hence
the peculiarities of point cloud data brought forth special-
ized solutions to manage, process, analyze and visualize
such data (Schiitz, 2016; Butler et al., 2021).

Point cloud data resides commonly in text-based data for-
mats, suitable for initial processing and transmission (Vo
et al., 2016). Widely used storage formats are the LAS
file format and the compressed LASzip incarnation (Isen-
burg, 2013). They build upon a standardized point and file
format specification', benefitting exchanging and merging
data from different sources. Unfortunately, the format has
many drawbacks. For example, it is not straightforward
to extend the point format with custom attributes. Further,
having the points laid out as a continuous record in mem-
ory fragments the attribute values across the whole file
storage space, leading to inefficient lookup of the entire
file to access only one attribute. Additionally, in the com-
pressed case, one needs to decompress from the beginning
of a chunk to the point of interest to extract its information,
rendering it rather unusable for random lookup.

While these shortcomings might not be relevant for time-
insensitive offline algorithms and batch processing, they
certainly matter when querying the data repeatedly with
high frequency, a common characteristic of neighborhood
analysis or visualization queries. For this, the data is of-
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ten reorganized and converted to data structures that use
spatial indexes like space partitioning trees (e.g., octree,
k-d-tree, R-tree), space-filling curves (e.g., Hilbert curve,
Z-index), locality-sensitive hashing (LSH) to accelerate
spatial range queries (Meijers, 2022; van Oosterom et al.,
2022).

Current state-of-the-art file-based solutions for render-
ing point cloud data are internally organized utilizing an
octree, like for example, Cloud Optimized Point Cloud
(COPC)?, Entwine Point Tile (EPT)?, implicit tiling in 3D
Tiles* or Potree (Schiitz et al., 2020). These structures all
incorporate some level of detail (LOD/cLOD) or level of
importance (LOI/cLOI), generally in discrete form, which
is a widely recognized necessity to facilitate the visualiza-
tion of extensive point cloud data given rendering and data
transmission constraints (Butler et al., 2021).

Relational spatial database management systems
(RDBMS) provide indexing and decent query per-
formance for small result sets but fail to scale well,
even when using specialized point cloud data extensions
(Lokugam Hewage et al., 2022). One reason is that central
components are commonly coordinating data organization
in RDBMS. Another is the resource use and maintenance
cost for indices, which can require up to 30% of additional
data space (Yu and Sarwat, 2017; Wang et al., 2023).
In terms of performance and scalability, however, a
completely decoupled operation of data nodes would be
preferable, which is called a shared-nothing architecture,
even more so if data size and traffic volume changes are
expected (Lokugam Hewage et al., 2022).

Preparing point cloud data for visualization purposes gen-
erally involves extensive preprocessing and finally results
in a custom dedicated data representation unsuitable for
general-purpose analysis. A recent attempt to serve large
point clouds over the internet for interactive visualization
resulted in a 25-fold storage amplification and a through-
put of about 65,000 points per second in the preprocess-
ing, respectively 100,000 points per second in consecutive
HTTP queries (Meijers, 2022). For the whole Netherlands
(AHN3) with about 700 billion points, this would mean a
preprocessing time of more than 120 days.

2.1 Visualization of Point Clouds

Visualizing a set of 3D points on the screen is a compa-
rably simple task with current hardware-accelerated 3D
graphics. Given the 3D coordinates of the points, cam-
era projection information, and the pose of the camera
in the 3D world, it boils down to projecting all points to
the screen plane, ordering the visible points on the screen
plane by Z coordinate and drawing those points (e.g., in
a color if the point cloud has attributes). In addition, Eye-
Dome Lighting can be applied to avoid a 3D space infer-
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ence of first-order geometry like surface normals limiting
computation to exactly the visible points.

Despite hardware acceleration, however, the amount of
points that can be rendered in real-time remains limited
and the data management system is required to provide
a representation of the visible point cloud data within a
specified point budget of a few million points. Classical
techniques to achieve this include clipping and view frus-
tum culling, where data organization is used to materialize
points within the field of view of the camera, importance
sampling in which points are ordered by importance for
visualization to further reduce the number of points and
algorithms to retrieve lower density point cloud represen-
tations farther away from the camera.

In sampling, one tries to combat the overplotting prob-
lem that for most reasonable camera poses for huge point
clouds, a multitude of points will be rendered per screen
pixel to drop the information of all but the front pixel.
Sampling has been extensively studied in computer graph-
ics and multiple efficient strategies can be applied (Bloom,
1970; Schiitz et al., 2020).

In view frustum culling, one tries to efficiently avoid the
consideration of the majority of the points during the ren-
dering process. Therefore, spatial partitioning and index-
ing, such as quadtrees, octrees, or bounding volume hier-
archies, are often applied. In this case, a certain amount of
points is represented by a 3D box. In the rendering stage,
the system first determines, which boxes could be visible
in the view frustum in order to download the points that
these boxes represent to the drawing pipeline.

2.2 Potree: A State-of-the-Art Massive Point Cloud
Visualization System

One of the most influential point cloud visualization sys-
tems is Potree. It provides a nice overview of a possible
implementation of a visualization system for massive point
clouds by combining a multilayer partitioning approach
(in order not to load the whole of the partitioning infor-
mation over the Internet) with a variant of Poisson-disk
sampling to ensure real-time visualization of massive point
clouds with limited point budgets (Schiitz et al., 2020).

(a) Chunking

(b) Bottom-Up Subsampling

Figure 2. Potree data structure generation (Schiitz et al., 2020)

Poetry employs an octree-inspired layered data structure
with an additive scheme (Figure 2). It is generated by first
chunking the data into small patches that are subsequently
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used as tree-leaf nodes in the initial creation of the index
structure. In the second step, inner tree nodes are recur-
sively populated with points sampled from their children.

In order to get visually good results from spatially or
temporally ordered 3D point cloud acquisitions, a cer-
tain amount of randomization to the order is favorable at
the expense of increasing the computational burden. In
their work Schiitz et al. (2020) show that Poison Sam-
pling creates superior visualization results at a higher
computational expense, while random sampling offers a
good tradeoff between visual quality and computational
resource use.

The resulting custom hierarchical spatial data organization
is optimized to download chunks in varying (discrete) lev-
els of detail to become efficient. As this approach gener-
ates huge hierarchies, the hierarchies themselves are de-
composed to avoid the requirement to download the whole
hierarchy before visualization starts.

It is worth noting that the backend implementation of the
Potree system is passive. That is, data is organized into
many small files or chunks in a file that can be retrieved
over the internet by clients if and only if they are needed
as individual HTTP requests. In this way, a valid backend
is just a web server providing files from the hierarchy gen-
erated by the Potree converter. For massive point clouds,
classical caching mechanisms can provide very high speed
for boxes queried multiple times (e.g., when the field of
view is only slightly changing) while unused data resides
on disk. On the contrary, this system’s performance is also
based on the ability of the storage infrastructure to provide
the required data quickly, which can become a challenge.

3 Concept

The current state-of-the-art solutions display several draw-
backs and limitations from the viewpoint of a general-
purpose analysis ready point cloud data management sys-
tem. For one they are rather slow due to the exhaustive pre-
processing. Further, this preprocessing is designed solely
for visualization purposes only and relies on specialized
data structures, indices and formats which can generally
only be used with dedicated software libraries. Querying
these data sources often requires knowledge about the data
structure and format in order to efficiently access only the
data parts of interest for a certain query to resolve.

To address these shortcomings we propose a system that
provides a simple RESTful API for generic range queries
over the spatial, temporal, and continuous hashing dimen-
sions and materialized continuous importance dimensions,
a self-describing transmission format and a simple data
distribution scheme to leverage parallel computing and
cloud computing. The proposed system shall close a gap in
current geospatial data management systems such as Post-
greSQL with PostGIS or Apache Sedona, which are dif-

ficult to use for point cloud management. Key differences
with existing systems are

o the linear scalability of the system with the data,
o the support of incremental query resolution
e a general support for sampling from the result set

e a database infrastructure not limited to efficient visu-
alization

3.1 Continuous Level of Importance

The problem of sampling reasonable amounts of points
from a geospatial dataset for visualization purposes is sim-
ilar to a ubiquitous concept in spatial data modeling known
as Level of Detail (LoD). In traditional maps, the amount
of information visible (e.g., labels, types of features) de-
pends on a discrete zoom level. For raster maps served
over the internet, one generally creates rasters for each
zoom level where higher levels are downsampled versions.
In Potree, for example, the points are distributed among
the hierarchically organized index tree nodes such that
each tree node holds a similar amount of points constitut-
ing a representative spatial sample within the tree node’s
spatial bounds (Schiitz, 2016). This makes it suitable for
visualizing the point cloud on a discrete level of details
corresponding to the depth in the spatial indexing graph
employed.

However, this discrete nature is not at all required or wel-
come as it can provide artifacts and flickering interaction
effects when suddenly the number of visible points and the
fidelity of the geometry increase or decrease during the in-
teraction. Hence, the concept of Continuous Level of De-
tails (CLoD) has been introduced in which every point is
associated with an importance number such that the set of
all points with an importance number smaller than a given
threshold 7 can be considered a good sample of the data.
Due to the interpretation of the newly associated value as
importance, this approach is sometimes known as Level of
Importance (Lol) as well (van Oosterom et al., 2022).

If an architecture for point cloud management and com-
puting aims at CLoD support, it is interesting to note that
the traditional discrete Levels of Detail can be seen as a
natural instance of CLoD in which only integer values for
the (continuous) importance value are utilized. Further, it
is important to realize that the visualization of point clouds
can then be interpreted as a range query in 4D space, where
three geometric representations are augmented with an ar-
tificial dimension representing the spatial importance of a
point during sampling.

3.2 Range Queries with Importance

To demonstrate the system we consider range queries, one
of the most fundamental query types of database systems.
In range queries, a query is formulated as a range object



which is used to find all intersecting objects. Given for ex-
ample a 3D axis-aligned box, the goal is to compute the
set of all points within this box. In this case, the box, re-
spectively the ranges of the query object, are orthogonal to
the data dimensions and therefore constitute an orthogonal
range searching problem. With importance added as a di-
mension, a range query can be formulated as a function of
the range bounds like

Range(xmin > Ymin s Zmin; ?mins Lmax; Ymax Zmax Zmax)

For datatypes that support infinity, this naturally encom-
passes range queries with infinite axes such as [—o0, 00].
Based on this we defined three semantic variations of these
queries:

e a full variant, representative of the classical range
query getting all information

e a p-sampling variant, where the query result is a uni-
form sample of the full result

e and a facet-sampling variant, where the query result
is a pseudo-random sample in a way such that multi-
ple facet queries can retrieve the full dataset

In order to implement p-sampling, we decided to add an
artificial floating point attribute ¢ with values from [0,1]
such that a p-sampling query can be expressed as a full
query with a limited sub-interval of this novel attribute by
translating it to ¢,y = 0 and ¢, = p. We call this novel
attribute continuous hash. This approach does not only
provide p-sampling queries but can be used as well to im-
plement refinement queries through facet-sampling. As a
means to facilitate these query semantics, we design our
system with a generic backend implementation optimized
for range queries over the spatial, temporal and importance
dimensions.

Databases traditionally implement spatial indexing based
on R-Trees or Quad-Trees among others (Wang et al.,
2023). Such space partitioning trees or bounding volume
hierarchies, in general, recursively partition space into
smaller and smaller bounding boxes following certain op-
timization criteria. However, what is common to all of
them is that the processing of range queries is simple as
all trees fulfill the condition that the bounds of parent tree
nodes fully contain all its children’s bounds. The indexed
objects, in our case points or point batches, are typically
kept in the leaf nodes or alternatively just referenced by
pointers from there.

In such structures, a tree traversal provides a highly per-
formant way of finding relevant candidates intersecting
given bounds. For these candidates, a final check against
the query bounds provides exactness. An interesting im-
plication of this approach is that a parallel implementation
of range query resolution is possible by first discovering
relevant candidates and then distributing the final checks
against the query bounds.

3.3 Distributed and Parallel Query Processing
Through Query Partitioning

In traditional relational databases, parallel query process-
ing is not directly possible as most queries are translated
into a sequential scan over one of the involved columns
which can use an index to avoid scanning useless parts
of the keyspace based on knowledge derived from query
predicates.

One principled way of introducing parallelism to such sys-
tems is the approach in which a specified main query is
not being executed by a single database instance. Instead,
amiddleware translates a single query into a family of sub-
queries, which are then executed by a set of database in-
stances in a distributed computing setting. Each subquery
provides a partial result and the middleware can resem-
ble the accurate and complete query result by aggregating
the subquery information in the context of the given main
query (Kossmann, 2000).

Note that the subqueries need not be a faithful decompo-
sition of the original query in this setting. One can design
systems in which the subqueries can have partial overlap
with each other (e.g., identical results are returned from
two different subqueries) or in general provide query re-
sults that serve as a candidate set for which the original
query predicates still need to be applied in a filter and re-
fine pattern. Overlap can be especially powerful to achieve
query-level fault tolerance. In this setting, multiple differ-
ent nodes are asked for the same data. This can give a wall-
clock performance boost because the fastest results can be
utilized and query runtime does not depend on the slowest
contributor. At the same time, it can help avoid incomplete
query results if parts of the infrastructure are unavailable.

Since a coordinator component is often responsible for in-
stantiating and merging micro queries, a caching mecha-
nism (in-memory or on-disk) should be implemented on
the level of the coordinator component to facilitate cache-
aware query routing. As the cache can be essential to the
interactivity of the overall system, this induces an open
question of how to extend this architecture towards dis-
tributed caching in which the same mini-query results can
be used for different client requests handled by different
coordinator components. We envision a gossip-style cache
information update as a good choice in this direction but
leave this area for future research due to its complexity.

4 System Architecture

The main goal is to have a data infrastructure for dynamic
point cloud data that can support interactive real-time vi-
sualization at scale while simultaneously serving as a plat-
form for analytical tasks. To facilitate this, we propose a
distributed system where the points are augmented with a
random continuous hash value that is utilized to create a
higher dimensional R*-tree. The architecture broadly fol-
lows client-server and microservices principles where the



service can run as a coordinator, worker, or both simulta-
neously (Figure 3). An open-source implementation writ-
ten in the Rust programming language’ relying on Apache
Arrow® for portable in-memory data representation is pub-
licly available.
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Figure 3. Overview of the distributed point cloud system archi-

tecture depicting a user’s interest in a range object which is re-
solved through query fragmentation on multiple nodes.

4.1 Middleware Design

The middleware basically exposes a simple API to orches-
trate and manage point cloud data and is also responsible
for query routing. Query routing is the procedure of send-
ing query requests to worker components. The system can
be instantiated with exhaustive routing in which queries
are decomposed into slices handed to the worker nodes
of the system. Gossip query routing in which a query is
emitted to every worker with a fixed probability p only,
or knowledge-driven routing in which queries are routed
incorporating knowledge about the data partitioning and
distribution scheme of the system are envisioned.

For orchestration purposes, an endpoint exists where in-
stances listen to requests from other instances to register
themselves with their URL. Like this, a distributed system
can be created for example by setting up an instance as a
coordinator with a fixed address and then starting several
instances as workers who make a request to the coordi-
nator for registration. Such a simple topology depicted is
further explored in Section 5 as a means to evaluate the
system. In this setup, the coordinator is prone to become
the bottleneck and single point of failure, though this can
be easily mitigated by using several coordinator nodes be-
hind a load balancer analoguous RAID 1. This analogy is
as well applicable to the worker nodes which naturally rep-
resent a RAID 0. Through these redundancies, our system
offers high flexibility, scalability and robustness against
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node failures. Things we like to explore further in the fu-
ture are handling the coordination client side, assessing
different topologies like peer-to-peer, and other distributed
systems approaches.

A node setup as a coordinator is basically responsible
for keeping track of existing worker nodes, distributing
requests among them and joining their returned results.
Upon a load request, containing for example several LAZ
files, the coordinator adds a range to each request and for-
wards it to the workers. These ranges specify equally sized
fractions for each node. Like this, the points are distributed
randomly amongst the workers based on evaluating a ran-
dom number generated for each point for inclusion in the
range. A query request issued by the user specifies inter-
est in data and associated query semantics as requested by
the client application. Based on this information, the coor-
dinator might decompose the query into multiple smaller
queries by slicing the query. With query slicing, we mean
a query segmentation strategy in which constraints on the
query are formulated in order to have a smaller result set
per query while the original query is then computed from
the overall result set of all query slices. This computation
can be a simple concatenation, a set union, or a union fol-
lowed by a refinement stage if the subqueries return more
data than the query actually requires.

A worker node, on the other hand, is responsible for ac-
tually executing the load, index and query request by pro-
cessing the data. Upon a load request, the workers load
a fraction of points provided their associated randomly
generated number 7 € [0,1) is in the interval of the range
[fromy,toy) specified in the request for the given worker
k. Like this, the entire data is split among the workers as
equally sized, nonoverlapping, normally distributed sam-
ples. Subsequently, each worker can independently con-
struct an in-memory R*-tree over the point cloud data frac-
tion. While other spatial indices would be possible, the
R*-tree is a widely accepted method for range query pro-
cessing. For static datasets, this can be done efficiently by
bulk loading using the Sort-Tile-Recursive (STR) or Over-
lap Minimizing Top-Down (OTM) algorithm (Leuteneg-
ger et al., 1997; Lee and Lee, 2003). Bulk loading ensures
high index quality for analytics workloads in which the
point cloud and the associated spatial indices are not up-
dated.

4.2 TImportance Augmentation and Partitioning

The baseline level of importance is given by generating a
uniform random number between 0 and 1 for each and ev-
ery point as a continuous hash. Then, a query interval [a, ]
on the importance translates to a uniform sample contain-
ing a point with a probability of b — a. More elaborated
ways of assigning levels of importance, like for example
blue noise sampling, Poisson sampling or dart throwing
can improve visual quality though they are not elaborated
in this work since the improvements are too marginal with
respect to added complexity (Schiitz et al., 2020).
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Adding a materialized continuous hash as a level of im-
portance enables us to process 4D range queries, which
essentially represent a random sample of the points in the
given spatial bounds. Compared to other solutions where
the importance lives implicitly in the hierarchy level of the
tree, this gives us some advantages. For example, it is pos-
sible to query multiple equal samples by shifting the im-
portance query range across the whole importance range.
Through this, we can conveniently and efficiently support
probabilistic analytical approaches or create multiple dis-
tinct samples for deep learning approaches like PointNet.
Another advantage is the opportunity for iterative query
refinement, as we can query for a consecutive importance
range without getting the same points.

As a baseline data distribution strategy, we consider uni-
form random assignment of points to workers. While other
data distribution schemes for example such modeled af-
ter a spatial ring structure based on a space-filling curve
are potentially interesting to investigate, the random distri-
bution strategy displays some pleasant characteristics for
distributed range queries. For once it is not necessary to
worry about query decomposition as one can push down
the query as is on multiple workers and it behaves equiv-
alent to only having a single node. Additionally, the data
and result set are similar on each node, hence all nodes
have a similar workload which results in effective and ef-
ficient parallelization.

4.3 Data Format

Point clouds can be conceptualized as a set of points P
where p; is in R? or more generic, each point consists of
a set of attribute values as shown in Figure 4. From this
perspective, using a tabular representation for point cloud
data follows naturally.

PZ{PI¢---1PN|P1'ER3} pi:{a'lﬁ---sami}

. _ e
S e a; | .. | Ay
.

Lttt 811 | - [8m1
- .‘ .

e " e e

., .
- &y | &mn

Figure 4. Conceptualization of point clouds: A set of points
where each point is defined by a set of attribute values.

To represent a point cloud in our system we rely on Apache
Arrow’, a modern data format optimized for analytical
workloads on two-dimensional data. The columnar data
layout offers efficient processing of range queries over
multiple dimensions, respectively columns. Further ben-
efits are the low serialization and deserialization overhead
when transmitting data and interoperability facilitated by
its self-describing format and memory layout specifica-
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tion, which is supported by a growing ecosystem of soft-
ware and applications.

5 Applications and Experiments

In this section, we present the results of selected experi-
ments to exemplify the performance characteristics of the
system in terms of query performance and scalability, for
which several different configurations are evaluated and
compared against similar experiments from existing re-
lated work where applicable. A well-researched field for
this represents the visualization of governmental aerial
laser scanning (ALS). Many more fields of application,
like urban digital twins, medicine (replacement of 2D im-
ages), autonomous driving and robotics, are considered for
future evaluation. Yet, the performance characteristics are
predicted to be similar for these use cases given the under-
lying system is working in the same fashion.

5.1 Dataset

The Actueel Hoogtebestand Nederland (AHN) represents
an ALS point cloud of the whole of the Netherlands with
a little more than 800 billion points in its third version
8. The dataset is delivered in 1374 LAZ files in which
each point is modeled in a local integral coordinate system
whose relation to the global scene is modeled by a scale
vector and an offset vector. This dataset is essentially two-
dimensional in the sense that the range of the z coordinate
is very small compared to the other coordinates. For each
experiment, we extracted a continuous subset of the whole
dataset.

5.2 Loading and Indexing

Preprocessing entails all the steps necessary to make point
cloud data available for querying. The major tasks in-
volved in this are loading the data from its source, applying
some partitioning and building up the index. In our case,
we read the LAZ files, partition them into a fixed-size grid
and then create an R*-tree. In Table 1 we measure the pre-
processing performance in terms of throughput (points per
time) as well as storage and memory footprint. The input
for this experiment consists of a single LAZ file of about
743 megabytes containing about 150 million points and
was run on a workstation with 16 cores.

The results show that our system has quite a high through-
put while keeping the memory footprint at an accept-
able level compared to Potree and PCServe. The perfor-
mance for the in-memory case is unsurprisingly notice-
ably higher, loading the whole AHN3 with about 700
billion points would take about 6.7 hours. Even though
our solution in its current state does not offer true out-
of-core processing, the distributed nature of our system

8https://www.ahn.nl/
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Table 1. Load and index creation performance metrics comparison.

File C_69AZ1.LAZ (743MB, 149 676 342 Points)
Preprocessing Load Index Total

Time Size Time  Size Time Size Throughput

(s) (MB) (s) (MB) (s) (MB) (Points/s)

Potree 6.2 17.9 240 4141 6230 284
PCServe 792.0 15138 318.0 3362 1110.0 18500 134 844
Ours (in-memory) 4.1 8 558 1.0 1267 5.1 9715 29114246
Ours (on-disk) 11.5 7442 1.9 1267 133 8709 11235275

can make up for it by aggregating the memory capacity
of many nodes. Compared to benchmark results of point
cloud data management systems, our system outperforms
all existing systems in terms of loading and indexing ex-
cept such based on Oracle Exadata (van Oosterom et al.,
2015; Lokugam Hewage et al., 2022). Taking the differ-
ence of the core count 16 vs 48 on Oracle Exadata into
account and our system demonstrating efficient use of par-
allelism we expect it to outperform these solutions as well
on comparable hardware.

5.3 Query Performance

To evaluate our approach’s effectiveness we conducted
several experiments in various system configurations to
give justifications for the system’s behavior for real-world
use cases and under scaling loads. First off we look at
range queries for visualization purposes where small re-
sult sets are expected. Two query modalities are chosen to
test the two extreme cases for visualization, on one hand,
get an overview at a low zoom level on the other hand a de-
tailed small extent when zoomed in. The results in table 2
are from two setups, once a single node and a cluster with
eight workers on which queries of both modalities, highly
sampled queries over the whole data extent and queries
solely bounded by a spatial extent were executed. As a
baseline PCServe is included.

In a single node setup with about 150 million points, our
system outperforms the baseline, even in the case we spill
the data to disk and only hold the index in memory. Even
in a distributed setup with about 4.5 billion points, a small
sample of the data representative of the whole dataset is
queried within 600 ms over HTTP.

5.4 Scaleability

The scalability is evaluated on a cluster of personal com-
puters connected over ethernet in a local area network.
Each node is configured with an AMD Ryzen 7 5800X
8-Core CPU, 32GB RAM and 250GB SSD. With Docker
Swarm, the services are managed and distributed among
the nodes. The load time remains constant as each node

reads the data from the disk, parses the content and then
discards points not matching the fraction assigned. Load-
ing by message passing to only decode the points once and
assign them to each node was tested though much slower
in this setup due to the interconnection bandwidth.
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Figure 5. Worker scalability and query performance of selected
queries executed on a system with 1, 2, 4 and 8 workers.

The results in Figure 5 show the query execution times on
a setup with 1, 2, 4 and 8 workers. The importance query
displays improvements from scaling. This is due to the fact
that the importance is randomly distributed across the data
and the query boils down to a scan hence on multiple nodes
the amount of data to scan becomes less. The box query
returns the points within spatial bounds. This is rather per-
formant even on a single node since the spatial locality in
the data from the sensor is preserved. This further shows
that the system does not display performance regressions
when scaling, indicating its low overhead cost.

In terms of query scalability, Figure 6 illustrates how
queries scale with regard to the result size. For this queries
with different result set sizes were executed against 8
workers with a total of about 2.5 billion points. The mea-
surements are done on three levels, the worker service
node, the coordinator service node and the client API re-
spectively. Loading takes about 138 seconds and indexing
takes about 4 seconds which equates to a throughput of



Table 2. Range query performance comparison.

Dataset size Query type Request duration  Result size
(M Points)  (box,sampling,mixed) (ms) (Points)
PCServe 598 38 981
Ours (in-memory, single node) 150 box 60 58 616
150 sampling 166 74 343
Ours (on-disk, single node) 150 mixed 196 74 926
Ours (in-memory, 8 workers) 4500 box 166 59 259
4500 sampling 599 45 304
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Figure 6. Query scalability in terms of the size of the result set
returned.

about 17 million points per second. The results show that
the query performance scales linearly to the result set with
a throughput of over 1 million points per second. The box
queries represent a two-dimensional spatial extent whereas
the importance queries filter by importance over the whole
extent of the dataset loaded. The formers tend to be faster
as the resulting query extent is more compact in terms of
chunks to process to resolve it.

From the measurements at different stages in the system,
one can see that the major bottleneck is the data transmis-
sion over ethernet. At the worker level, the query execution
time only slightly increases for the result sets up to 5 mil-
lion points. At the server level, the increase is substantial,
even more, measured at the client side. This indicates that
distributing large queries leads to degraded performance
compared to a local single-node setup. Nevertheless, for
queries with a small result set, commonly used for visu-
alization purposes, the overhead of a distributed setup is
much lower and can to some extent be compensated by
the faster query performance.

node, multiple instances as well as distributed scenarios,
since it is possible to set up various topologies as in-
stances can be simultaneously coordinator and/or worker.
Like this, we can create a robust and fault-tolerant setup
for querying arbitrary range queries over spatial and im-
portance dimensions through a simple API.

For future work, we want to investigate a point cloud pro-
cessing mechanism in which we further exploit one of the
key advantages of the proposed architecture, namely, that
the data representation in main memory is simple and that
data access can be immediate and not through an API like
a database cursor. We aim to show that integration with
numpy, tensorflow, or pytorch becomes easy and we want
to develop further the given ideas into a more mature point
cloud data infrastructure by analyzing the domain demand,
designing new queries and query semantics, and finally
providing the tool to use to the point cloud research com-
munity.

Data and Software Availability

Research code supporting this publication is available
in the GitHub repository https://github.com/tum-bgd/
2024- AGILE-RandomDataDistribution. Please follow the
instructions in the file README.md in the repository to
set up the system.


https://github.com/tum-bgd/2024-AGILE-RandomDataDistribution
https://github.com/tum-bgd/2024-AGILE-RandomDataDistribution
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