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Abstract
Two-dimensional (2D) convolutional kernels have
dominated convolutional neural networks (CNNs)
in image processing. While linearly scaling
1D convolution provides parameter efficiency,
its naive integration into CNNs disrupts image
locality, thereby degrading performance. This
paper presents path convolution (PathConv), a
novel CNN design exclusively with 1D operations,
achieving ResNet-level accuracy using only 1/3
parameters. To obtain locality-preserving image
traversal paths, we analyze Hilbert/Z-order paths
and expose a fundamental trade-off: improved
proximity for most pixels comes at the cost of
excessive distances for other sacrificed ones to
their neighbors. We resolve this issue by propos-
ing path shifting, a succinct method to reposition
sacrificed pixels. Using the randomized round-
ing algorithm, we show that three shifted paths
are sufficient to offer better locality preservation
than trivial raster scanning. To mitigate poten-
tial convergence issues caused by multiple paths,
we design a lightweight path-aware channel at-
tention mechanism to capture local intra-path and
global inter-path dependencies. Experimental re-
sults further validate the efficacy of our method,
establishing the proposed 1D PathConv as a vi-
able backbone for efficient vision models.

1. Introduction
Convolutional Neural Networks (CNNs) have emerged as
the predominant paradigm for computer vision tasks across
diverse domains (LeCun et al., 1989; Fukushima, 1988;
Krizhevsky et al., 2017; Girshick, 2015; Chen et al., 2018;
Ravanbakhsh et al., 2016), with two-dimensional (2D) con-
volution serving as the fundamental operation. In compari-
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son, 1D convolution operating sequentially along a single
dimension is inadequate for image processing due to its in-
ability to preserve the spatial continuity of adjacent pixels in
both directions. Nonetheless, vision models still incorporate
1D convolution through factorized convolution (Rigamonti
et al., 2013; Szegedy et al., 2016; 2017; Peng et al., 2017;
Guo et al., 2022) or oriented kernels (Freeman et al., 1991;
Weiler et al., 2018; Li et al., 2021; Kirchmeyer & Deng,
2023) to reduce computational complexity. The primary
rationale arises from the architectural simplicity of 1D con-
volution scaling linearly with the kernel size rather than
quadratically like 2D convolution.

These insights drive this paper’s pursuit of an ostensibly
paradoxical objective: constructing a vision model that ex-
clusively utilizes 1D convolution to achieve superior parame-
ter efficiency while simultaneously overcoming its intrinsic
limitations to match the capabilities of conventional 2D
CNNs. The sequential architecture comprising solely 1D
operators facilitates pipelining implementation on hardware
(Mukherjee & Mukhopadhyay, 2018; Cheng & Parhi, 2020;
Narayanan et al., 2021), thereby substantially reducing end-
to-end latency. Consequently, using only 1D convolution
offers apparent advantages in computational efficiency. The
primary challenge lies in enabling 1D CNNs to effectively
interpret visual information.

This work employs only 1D operators to construct CNNs,
necessitating 2D images to be flattened. Trivial image traver-
sal by raster scanning disrupts the spatial locality of images,
which is essential for detecting primitive visual features,
such as edges, textures, and shapes. Unlike raster scan-
ning, the Hilbert (Hilbert, 1935) and Z-order (Morton, 1966)
curves are two alternative traversal paths with recognized
spatial proximity preservation capability (Jagadish, 1990;
Dai & Su, 2003; Wang et al., 2022; Wu et al., 2024), indicat-
ing their great potential to be the key ingredient to 1D CNNs
to achieve comparable performance to 2D CNNs. However,
this paper argues that the locality preservation properties
of these two paths have a critical trade-off: compared to
raster scanning, while the majority of pixels maintain closer
proximity to their adjacent pixels in the resulting 1D pixel
streams, the remaining pixels are sacrificed due to exces-
sively long distances to neighbors, even sometimes leading
to greater total distances than raster scanning. This find-
ing persists for multiple image resolutions, demonstrating
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ResNet-18/50
PathConvS/B

Figure 1. The performance comparison between PathConv and
ResNet models on three datasets, with circle radii denoting the
number of model parameters. PathConv models achieve ResNet-
level performance using only 1/3 of the parameters.

that direct usage of both paths cannot globally guarantee
better locality than raster scanning, inducing suboptimal
performance of 1D CNNs relative to 2D architectures.

This paper first presents that the positions of these sacrific-
ing pixels can be shifted by sampling from their spatially
expanded variants, inspiring us to integrate a set of carefully
selected shifted paths to ensure pixels at all positions are
closer to their neighbors than raster scanning for at least one
path. Meanwhile, limiting the number of paths is essential
to avoid significant computational overhead, as input im-
ages must be traversed once for each path. Determining the
minimal set of paths to ensure better locality preservation
than raster scanning for all pixels is equivalent to the NP
set cover problem (Vazirani, 2003). Using the randomized
rounding algorithm (Bertsimas & Vohra, 1998), we show
that merely three paths suffice for Hilbert and Z-order paths.
A customized CUDA kernel further accelerates the image
traversal procedure up to 73x, making its costs negligible.

Building upon this efficient image traversal layer, we pro-
pose path convolution models adapted from the macro de-
sign of depthwise separable convolution (Chollet, 2017)
and inverted bottleneck (Sandler et al., 2018) but using ex-
clusively 1D operators. Notably, multiple traversal paths
require 1D kernels to process distinct regions of images con-
currently, which presents challenges for model convergence.
Hence, we propose a path-aware channel attention mecha-
nism to capture both local intra-path and global inter-path
dependencies to achieve dynamic focus on images, thereby
reasonably enabling rapid receptive field growth. Experi-
mental results demonstrate that our models achieve compa-
rable performance to ResNet (He et al., 2016) while utilizing
only 1/3 parameters, indicating that the proposed path con-
volution effectively maximizes the parameter efficiency of
1D kernels with minimal performance degradation.

2. Related Work
2.1. 1D convolution in CNNs

The linear scaling cost of 1D convolution with the kernel
size presents compelling opportunities for efficient 2D CNN
architectures. We separately discuss them based on their
distinct theoretical foundations.

Factorized convolution. The core idea of factorized convo-
lution builds on a fundamental principle from linear algebra
that a 2D convolution kernel can be approximated or exactly
decomposed into sequential 1D convolutions. For instance,
a rank-1 separable kernel is equivalent to the product of
consecutive horizontal and vertical 1D kernels (Rigamonti
et al., 2013; Jaderberg et al., 2014; Jin et al., 2014), enabling
a k × k kernel to be substituted by two 1D kernels with
2k parameters in total. Such parameter reduction becomes
increasingly significant as k increases while maintaining
identical receptive field sizes, so CNN architectures involv-
ing large kernel sizes widely adopt this idea (Szegedy et al.,
2016; 2017; Peng et al., 2017; Guo et al., 2022; Huang et al.,
2023). However, 2D kernels in CNNs do not inherently
possess low-rank properties. Consequently, many methods
have emerged to better approximate 2D kernels by learning
low-rank kernels and applying singular value decomposi-
tion, aiming to minimize potential performance degradation
(Denton et al., 2014; Lin et al., 2018; Yang et al., 2020).

Oriented convolution. Unlike factorized convolution, ori-
ented kernels place parameters along multiple angles beyond
solely horizontal and vertical orientations (Li et al., 2021;
Kirchmeyer & Deng, 2023). The underlying motivation
could be illustrated by a trivial example: a full-rank 2D
kernel denoted by a diagonal matrix is hard to decompose
into horizontal and vertical 1D kernels but can be directly
represented by a single 45◦oriented 1D kernel. However,
these methods generally require dedicated software and
hardware implementation for efficiency and optimization,
as popular deep-learning libraries do not natively support
them. A conceptually related technique is steerable filters,
which enhance their expressiveness by learning rotation-
equivalence/invariance features, which are proven effec-
tive in capturing directional characteristics like textures and
edges (Freeman & Adelson, 1991; Cohen & Welling, 2016;
Worrall et al., 2017; Weiler et al., 2018). These methods
are usually more complex than oriented kernels and do not
necessarily use 1D convolution.

In comparison, the proposed path convolution model com-
prises only 1D operations to facilitate pipelining and max-
imize the parameter efficiency of 1D kernels, processing
pixel streams flattened from input images, which differen-
tiates this paper from all methods above incorporating 1D
convolution while maintaining 2D input/output signatures.
However, images inherently have a spatial structure where
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proximate pixels have strong correlations and form mean-
ingful patterns. Flattening images into 1D pixel streams
disrupts these crucial locality features. To address this issue,
this paper uses traversal paths based on Hilbert and Z-order
curves for better locality preservation than raster scans.

2.2. Hilbert and Z-order curves

Hilbert and Z-order curves exemplify space-filling curves
(Peano, 1890) passing through all unit squares (pixels) ex-
actly once in two- or higher-dimensional discrete spaces
with topological self-organizing properties, i.e., invariant ge-
ometric structure across multiple scales. Concretely, one can
observe a pattern topologically equivalent to the complete
curve at any segment for arbitrary magnification levels, dif-
fering only in scale and/or rotational orientation, as shown in
Figure 2. This characteristic originates from their recursive
definitions, creating a scale-invariant 1D-to-2D mapping
inherently constraining the spatial distances of points in the
output space relative to their input space proximity (Lempel
& Ziv, 1986; Dai & Su, 2003). Hence, the self-organizing
nature of Hilbert and Z-order curves enables their locality
preservation properties for multiple resolutions, empower-
ing applications in image compression (Ansari & Fineberg,
1992; Wang et al., 2022), databases (Kamel & Faloutsos,
1994; Castro et al., 2005), parallel computing (Yoo et al.,
2003; Böhm et al., 2018), and point cloud processing (Chen
et al., 2022; 2023; Wu et al., 2024).

However, this paper traverses images along paths defined by
Hilbert and Z-order curves, mapping from 2D to 1D rather
than the reverse, thus hardly ensuring equivalent strength
in locality preservation. The fundamental limitation arises
because while two points may be proximate in 2D space,
1D paths might traverse a long distance to connect them,
particularly for pixels at (sub)quadrant boundaries, result-
ing in some spatially adjacent points being mapped farther
apart in the 1D sequence than raster scanning, as depicted
in Figure 3 (see Appendix A for more examples in mul-
tiple resolutions). Consequently, the direct application of
Hilbert or Z-order paths for image traversal produces subop-
timal results in image recognition tasks, as evidenced by our
experiments (Table 4). In this paper, we mitigate this lim-
itation by integrating multiple shifted paths sampled from
their spatially expanded variants as elaborated in Section
3.2, thereby ensuring better locality preservation for every
pixel than raster scanning in at least one path.

3. Locality-preserving Paths
This section aims to find a set of paths satisfying the locality
constraint, wherein each pixel maintains shorter cumulative
distances to its neighbors than its corresponding pixel in
the raster scan path. Our locality measurement reveals that
conventional Hilbert and Z-order paths possess imperfect

Hilbert curves

Z-order curves

Figure 2. Hilbert and Z-order curves for multiple sizes. Hilbert
curves repeat a U-shape pattern with rotations, whereas Z-order
curves replicate a Z-shape pattern without rotations.

(a) raster scan path (b) Hilbert path (c) Z-order path

Figure 3. Pixel-wise comparison between (a) raster scan and (b)
Hilbert / (c) Z-order paths. Pixels with shorter cumulative distances
to all their neighbors than (a) are in apricot, otherwise purple.

locality preservation. To address this deficiency, we pro-
pose a concise path-shifting method to relocate pixels with
long distances to their neighbors. While combining multiple
shifted paths suffices the locality constraint, minimizing the
number of paths remains essential for optimizing traversal
efficiency. Our analysis indicates that determining the mini-
mal set of paths fulfilling the locality constraint constitutes
an NP problem. We use the randomized rounding algorithm
to solve the problem and find that three paths suffice the
locality constraint for commonly used image resolutions.

3.1. Locality measurements

A straightforward and convincing approach to assessing
the locality preservation capability of a traversal path is
to calculate the cumulative distances between each pixel
and all its adjacent neighbors in resulting 1D pixel streams.
Comparing to the raster scan path served as the baseline,
except for comparing the total distances of all pixels in a
path, pixel-wise comparisons are also taken into account by
calculating the proportion of pixels with shorter distances
to their neighbors at the same positions, denoted by Psd.

Table 1 reports the locality measurements of Hilbert and
Z-order paths versus raster scan paths for multiple resolu-
tions. Although Hilbert paths guarantee that Psd increases
as the resolution grows, the total distances are contradic-
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(b) sampling from larger paths (c) the resulting shifted path (a) the original path (d) locality preservation of pixels
Figure 4. The path shifting procedure. Given (a) H16 and c = {6, [1, 5], 0}, an expanded (b) H22 (16 + 6) is firstly generated. Then, a
16× 16 sampling window, with its bottom left coordinate at [1, 5], is applied to (b) to obtain (c) Hc

16. The coloring schema of Figure 3 is
applied to (a) and (c). Jointly considering (a) and (c), (d) shows the locality preservation status of all pixels compared with R16, where (a)
initially enables apricot pixels to have better locality preservation. (c) further enables light apricot pixels, demonstrating the effectiveness
of the proposed path-shifting method for relocating sacrificed pixels. Purple pixels still have longer distances to their neighbors.

Table 1. Locality measurements of the raster scan, Hilbert, and
Z-order paths for multiple resolutions.

Path Resolution Total Distance Psd

raster scan
32× 32

1.88× 105 -
Hilbert 2.15× 105 79.10%
Z-order 1.80× 105 74.61%

raster scan
64× 64

1.54× 106 -
Hilbert 1.80× 106 80.96%
Z-order 1.49× 106 81.35%

raster scan
128× 128

1.24× 107 -
Hilbert 1.48× 107 86.51%
Z-order 1.22× 107 84.50%

raster scan
256× 256

1.00× 108 -
Hilbert 1.20× 108 89.04%
Z-order 0.99× 108 89.17%

torily longer. This is because most pixels at the border of
quadrant boundaries are sacrificed to keep the recursive, self-
similar structures of Hilbert paths, necessitating non-local
multi-step connections between spatially adjacent pixels
located in different quadrants of recursive subdivisions, as
previously shown in Figure 3. While Z-order paths maintain
shorter total distances than the raster scan path, they fail
to consistently provide higher Psd for the same reason as
Hilbert paths, not to mention the locality constraint implies
Psd = 100%. Consequently, directly applying Hilbert and
Z-order paths yields suboptimal spatial locality preservation,
thereby constraining the model performance.

3.2. Path shifting

This paper introduces a simple method for repositioning
sacrificed pixels in Hilbert and Z-order paths, eliminating
their concentration at (sub)quadrant boundaries. Figure 4

illustrates the detailed procedure using a Hilbert path as
an example. Given images of size s× s, shifted paths are
sampled from their spatially extended variants, with sizes
equal to the sum of s and the padding size p. Subsequently,
the sampling window of dimension s× s is positioned ac-
cording to its bottom left coordinates [i, j], where i, j are
integers in range [0, p]. Besides, shifted paths could be ro-
tated r degrees, where r ∈ {0, 90, 180, 270}, to achieve
more diverse repositioning of sacrificed pixels. A configura-
tion c = {p, [i, j], r} thus specifies a path-shifting operation.
Accordingly, we denote shifted Hilbert and Z-order paths of
size s× s with configuration c as Hc

s and Zc
s , respectively.

The original Hilbert and Z-order paths conform to this no-
tation with c omitted, as all parameters equal 0, yielding
Hs and Zs, respectively. Similarly, we have Rs to denote
the raster scan path. The proposed shifting approach ef-
fectively relocates sacrificed pixels previously located at
(sub)quadrant boundaries, as shown in Figure 4, revealing
the feasibility of meeting the locality constraint. When a set
of c generates shifted paths that fulfill the locality constraint,
we denote it as C. In other words, a set of paths HC

s or ZC
s

can guarantee that there are no sacrificed pixels.

We only consider square images here for simplicity. Ap-
pendix B further indicates that this shifting method also
works for non-square resolutions and substantially broad-
ens the applicability of Zs by removing its limitation of
s ∈ {2n | n ∈ N}, where N is the set of natural numbers.

3.3. The minimal C satisfying the locality constraint

The cardinality of C, denoted as |C|, represents the num-
ber of shifted paths. While a large |C| trivially meets the
locality constraint, it simultaneously introduces substantial
overhead by traversing images for |C| times. Therefore, the
ideal solution is determining C with the smallest possible
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Table 2. The configurations denoted as C∗ satisfying the locality
constraint when |C| = 3 for Hilbert and Z-order paths.

Path s Configurations (C∗)

Hilbert
32

{ 0, [ 0, 0], 0}
{24, [14, 1], 180}
{18, [ 7, 0], 270}

64
{ 0, [ 0, 0], 0}
{ 7, [ 7, 0], 180}
{40, [13, 1], 0}

Z-order
32

{32, [16, 26], 180}
{32, [14, 16], 0}
{32, [12, 20], 0}

64
{64, [36, 32], 270}
{64, [36, 34], 90}
{64, [28, 32], 0}

cardinality satisfying the locality constraint. In Appendix
C, we demonstrate that this problem is polynomial-time
reducible to the NP set cover problem (Vazirani, 2003).
Hence, existing algorithms and theoretical bounds of the
set cover problem could be applied to our problem to find
and evaluate satisfactory C. We employ the randomized
rounding algorithm (Raghavan & Tompson, 1987) trying to
find the minimal C satisfying the locality constraint. First,
the universe C must be specified given image size s2. |C|
should be sufficiently large to ensure adequate diversity in
the distribution of sacrificed pixels while remaining con-
strained to maintain computational feasibility given the NP
complexity. In each configuration c = {p, [i, j], r}, where
r ∈ {0, 90, 180, 270} and [i, j] is determined by p with
i, j ∈ [0, p], only p requires detailed consideration.

Both Hs and Zs are defined recursively and self-replicated
when s is doubled. When p ≥ s, the same [i, j] derives
similar shifted paths where the positions of sacrificed pixels
exhibit no significant differences between Hc

s+p / Zc
s+p

and Hc
s / Zc

s (see Appendix D). Consequently, [1, s) is a
reasonable parameter space for p. In practice, while Hs can
directly apply this setting, Zs only accept s ∈ T , where
T = {2n | n ∈ N}. Hence, we set p = t − s for Zs,
where t is the smallest element in T larger than s. In this
way, C could be determined given s for both kinds of paths.
Solving by the randomized rounding algorithm, we find
that |C| = 3 sufficiently satisfies the locality constraint.
The corresponding c are given in Table 2. Considering the
theoretical approximation ratio of ln s2 ≈ 6.93 and 8.32
for s = 32 and 64, respectively (Bertsimas & Vohra, 1998;
Feige, 1998), |C| = 3 is highly likely optimal, as one path
cannot meet the locality constraint. We designate these
C as C∗ to represent the default configurations for model
construction, which theoretically yield optimal path sets for
efficient locality-preserving image traversal. More details of
parameter selections, algorithm specifications, calculation
time, etc., are provided in Appendix D.

4. Path Convolution Model
This section introduces the path convolution (PathConv)
model, a CNN architecture with only 1D operators pro-
cessing flattened 1D images. Figure 5 shows its overall
architecture similar to canonical 2D CNNs (He et al., 2016;
Liu et al., 2022). Input images are first transformed into 1D
pixel streams by the path traversal layer, then fed into the
stem layer, followed by PathConv blocks organized in four
stages with downsampling layers in between. Besides, we
propose a path-aware channel attention mechanism as an
imperative component in our model to effectively process
pixel segments from different regions of images. Detailed
designs are elaborated in the following subsections.

Stage 1

… … … …

Stage 2 Stage 3 Stage 4

path traversal layers stem layers PathConv blocks
downsampling layers classification head

Figure 5. The overall architecture of PathConv models

a

b

Figure 6. Given distinct paths (left: H16, right: Hc
16, where c =

{6, [0, 5], 0}), the model simultaneously observes (nearly) aligned
regions in different orders (e.g., Region a: first 16 pixels), or
disparate regions (e.g., Region b: last 16 pixels).

4.1. Path traversal layer

The path traversal layer flattens input images into 1D pixel
streams following traversal orders specified by a set of paths
consisting of sequential pixel coordinates. Note that this
transformation is read-only, presenting significant potential
for efficiency optimization. For example, we implement a
CUDA kernel to perform fast image traversal by leveraging
NVIDIA GPU parallelism, demonstrating up to 73-fold ac-
celeration compared to a single-thread CPU implementation.
We provide more details in Appendix E. We emphasize that
the path traversal layer remains hardware-agnostic. Its over-
head can become negligible through common optimization
strategies, thus hardly downgrading the model efficiency.

The path traversal layer samples pixels along distinct paths.
Hence, PathConv models simultaneously process pixel seg-
ments (a) from spatially aligned regions in varying orders
or (b) from different spatial regions, as shown in Figure 6.

5



One-dimensional Path Convolution

Both patterns are worth discussion as they fundamentally
differ from conventional CNNs, generally processing the
same spatial areas in the same sliding-window order.

Case (a) implies that 1D kernels handle pixels within
(nearly) overlapping regions for multiple orders, which is
similar to applying depthwise 1D convolution grouped by
paths. This pattern also conceptually resembles oriented 1D
convolution discussed in Section 2.1, where varying orienta-
tions (paths) enhance kernel expressiveness. Whereas case
(b) necessitates the model to observe different regions of
original images, effectively expanding the receptive fields.
However, the corresponding kernel sizes remain the same,
which may provide insufficient model capacity, potentially
impeding model convergence.

4.2. Path-aware channel attention

To address this issue, we introduce a path-aware channel at-
tention (PACA) module that captures both path-specific and
cross-path dependencies, enabling models to focus dynami-
cally on discriminative features. The parameter efficiency
is maintained by using only channel-wise and path-wise
attention, thereby avoiding excessive additional parameters.
Given an input tensor X ∈ RB×H×L, where B is the batch
size, H is the number of channels, and L is the input length,
PACA processes features within and across paths.

We first organize X into path-specific groups to calculate
intra-path attention, building upon efficient channel atten-
tion (Wang et al., 2020). For P paths and G channels per
path, X is reshaped into X̂ ∈ RB×P×G×L. We compute
dual-scale attention weights for each path p using adaptive
kernel sizes k1 = t + (1 − t mod 2) and k2 = 2k1 − 1,
where t = ⌊log2 G/γ + β/γ⌋, γ and β are hyperparame-
ters controlling attention scales. We set γ = 2 and β = 1
in experiments. Then for each p, the corresponding Xp is
averaged over L to obtain yp ∈ RB×1×G. Subsequently,
the intra-path attention weights ep are computed by

e1p = Conv1D(yp, k1)

e2p = Conv1D(yp, k2)

ep = σ(W0[a
1
p; a

2
p] + b0)

where Conv1D are 1D convolutional layers for e1p and e2p,
W0 ∈ R1×2 and b0 ∈ R are learnable real-number pa-
rameters processing concatenated e1p and e2p, and σ is the
sigmoid activation function. The intra-path attention cap-
tures channel-wise dependencies at two scales, requiring
merely O(P logG) parameters to obtain more robust chan-
nel scaling through dynamic balance between scales.

To model inter-path relationships, the concatenated path-
specific ep are firstly averaged across G to obtain z ∈
RB×P . Then, the inter-path attention weights f are cal-

LN

pw, k=1

dw, k=11

pos. enc.

LN
dw, k=9, dim

pw, exp.  dim

pw, dim
LN + GELU

PACA
(a) stem layer

(b) PathConv block

×

Figure 7. The stem layer and PathConv block designs.

culated through a multi-layer perception:

f = σ(W2GELU(W1LN(z) + b1) + b2)

where W1 ∈ RP×2P , b1 ∈ R2P , W2 ∈ R2P×P , b2 ∈ RP

are parameters of two dense layers, LN denotes layer nor-
malization (Ba et al., 2016), introducing O(P 2) parame-
ters in total. GELU serves as the activation function here
(Hendrycks & Gimpel, 2016). The final attention weights w
combine both intra- and inter-path attentions by w = z ⊙ f ,
where ⊙ denotes element-wise multiplication with broad-
casting. We can apply w to scale X̂ across channels with
global context relationships to produce the final output.

With appropriate feature scaling by PACA, we mitigate the
convergence issue presented in case (b). Meanwhile, con-
sidering the number of paths P is constant (e.g., |C∗| = 3),
the entire PACA only introduces O(logG) additional pa-
rameters, growing logarithmically with model width, thus
maintaining parameter efficiency. PACA modules are inte-
grated into PathConv blocks introduced later.

4.3. Other building blocks

Stem design. Figure 7(a) illustrates the design of stem lay-
ers. A pointwise Conv1D first increases the channel dimen-
sion, followed by a depthwise Conv1D with a kernel size
of 11. Compared to depthwise separable convolution (Chol-
let, 2017), reordering depthwise and pointwise Conv1D
operations reduces the number of parameters. Addition-
ally, learnable positional encoding (Dosovitskiy et al., 2021)
enables the model to retain awareness of critical spatial in-
formation of pixels, with its necessity demonstrated by the
ablation study (Table 5).

PathConv Blocks. The PathConv model utilizes PathConv
blocks as the main building block, incorporating PACA
modules before inverted bottlenecks (Sandler et al., 2018)
with an expansion ratio of 4, as depicted in Figure 7(b).
In the ablation study (Table 5), we validate that PACA is
indispensable for PathConv models.

Others. The downsampling layers contain depthwise
Conv1D with kernel sizes of 9 and strides of 2, followed by
LN layers. The classification head is simply a dense layer
transforming the dimensionality into the number of classes.
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5. Experiments
We present experimental settings and results to evaluate
the proposed PathConv model. Analysis of path selection
demonstrates that C∗ brings optimal performance. Ablation
studies further validate the PathConv design.

5.1. Settings

Datasets. We evaluate PathConv models using three
datasets: CIFAR-10 (Krizhevsky et al., 2009), SVHN (Net-
zer et al., 2011), and ImageNet-64 (Chrabaszcz et al., 2017),
a downsampled version of ImageNet-1K (Russakovsky
et al., 2015) with the same image count and dataset splits
with a resolution of 64 × 64 across 1000 classes. We use
low-resolution datasets as they amplify locality preservation
issues (as shown in Table 1, Psd grows for both paths as
image resolution increases), allowing clear attribution of
performance gains to our path-shifting method and design
of components in PathConv models.

Models. PathConv models are constructed in two variants,
small and base, denoted as PathConvS/B, with compara-
ble floating-point operations (FLOPs) as ResNet-18/50 (He
et al., 2016), respectively. The number of blocks (#bl.) in
each stage and the corresponding number of channels (#ch.)
are listed below:

· PathConvS: #bl.=(2, 2, 2, 2), #ch.=(48, 96, 192, 384)
· PathConvB: #bl.=(2, 2, 3, 3), #ch.=(60, 120, 240, 480)

We remove pooling layers from ResNet and change their
large kernels into 3 × 3 to better adapt dataset resolu-
tions. For ImageNet-64, the wide residual network (WRN)
(Zagoruyko, 2016) is also considered, which is used in the
paper introducing ImageNet-64 (Chrabaszcz et al., 2017).

Training. PathConv models employs the AdamW opti-
mizer (Loshchilov & Hutter, 2019), while ResNet models
utilize stochastic gradient descent with Nesterov momen-
tum (Sutskever et al., 2013). All models are trained for 300
epochs with a 10-epoch linear warmup. The learning rate
follows the cosine annealing schedule (Loshchilov & Hutter,
2017). We adopt RandAugment (Cubuk et al., 2020) for
data augmentation. For ImageNet-64, we additionally apply
Mixup (Zhang et al., 2018) and CutMix (Yun et al., 2019).
Stochastic depth (Huang et al., 2016) and label smoothing
(Szegedy et al., 2016) are also used for regularization. More
experimental settings are provided in Appendix F.

5.2. Results

Table 3 shows the comparison results for three datasets
regarding parameter counts (#param.), FLOPs and top-1 ac-
curacy. PathConvS/B models incorporate suffixes denoting
paths for the path sampling layers. Except for HC∗

s and ZC∗

s

(see Table 2), Rs serves as a baseline for PathConv models.

Table 3. Performance comparison for three datasets. Numbers in
parentheses show accuracy differences between PathConv variants
and their ResNet counterparts with similar FLOPs. Green indicates
improvement, red shows ≥ 2% degradation, and amber denotes
others. For WRN (WRN-n-w), n indicates the number of layers,
and w denotes the width multiplier.

model #param. FLOPs top-1 acc.

CIFAR-10 (s = 32)
ResNet-18 11.68M 1.11G 93.17%

PathConvS-HC∗
s 3.62M 1.14G 92.45% (-1.02%)

PathConvS-ZC∗
s 3.62M 1.14G 92.66% (-0.51%)

PathConvS-Rs 3.61M 1,14G 89.56% (-3.61%)
ResNet-50 25.55M 2.60G 93.95%

PathConvB-HC∗
s 7.82M 2.50G 93.97% (+0.02%)

PathConvB-ZC∗
s 7.82M 2.50G 93.56% (-0.39%)

PathConvB-Rs 7.82M 2.49G 90.02% (-3.93%)

SVHN (s = 32)
ResNet-18 11.68M 1.11G 97.66%

PathConvS-HC∗
s 3.62M 1.14G 97.12% (-0.54%)

PathConvS-ZC∗
s 3.62M 1.14G 96.57% (-1.09%)

PathConvS-Rs 3.61M 1.14G 91.60% (-6.06%)
ResNet-50 25.55M 2.60G 97.86%

PathConvB-HC∗
s 7.82M 2.50G 97.81% (-0.05%)

PathConvB-ZC∗
s 7.82M 2.50G 97.58% (-0.28%)

PathConvB-Rs 7.82M 2.49G 94.36% (-3.50%)

ImageNet-64 (s = 64)
WRN-40-2 9.33M 3.83G 61.23%
ResNet-18 11.68M 4.44G 63.43%

PathConvS-HC∗
s 3.76M 4.58G 62.26% (-1.17%)

PathConvS-ZC∗
s 3.76M 4.58G 62.73% (-0.70%)

PathConvS-Rs 3.76M 4.58G 58.04% (-5.39%)
WRN-40-5 57.24M 23.78G 70.32%
ResNet-50 25.55M 10.39G 68.43%

PathConvB-HC∗
s 8.01M 9.98G 68.46% (+0.03%)

PathConvB-ZC∗
s 8.01M 9.98G 68.83% (+0.40%)

PathConvB-Rs 8.00M 9.97G 60.40% (-8.03%)

We can observe that PathConv models with HC∗

s and ZC∗

s

consistently achieve comparable performance to ResNet
while requiring <1/3 #param. and similar FLOPs. Notably,
on ImageNet-64, PathConvS-HC∗

s /ZC∗

s outperforms WRN-
40-2 despite the latter’s higher parameter count. PathConvB-
HC∗

s /ZC∗

s also perform better than ResNet-50. These re-
sults demonstrate the parameter efficiency of the proposed
pure 1D PathConv architectures. Conversely, PathConv
models utilizing Rs have significantly lower performance
than ResNet, indicating that locality-preserving paths gen-
erated by our path-shifting method (C∗) are more effective
for image traversal in 1D PathConv models than raster scan
paths, corroborating the analysis presented in Section 3 and
also illustrating that PathConv models effectively leverage
the locality-preserving properties of HC∗

s and ZC∗

s .
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Table 4. Performance comparison of PathConvB models using
varying image traversal paths. Numbers in parentheses indicate
accuracy differences of HC∗

s /ZC∗
s from HC+

s /ZC+

s and Hs/Zs.
The same color schema as Table 3 is applied here.

model #param. FLOPs top-1 acc.

CIFAR-10 (s = 32)
PathConvB-HC∗

s 7.82M 2.50G 93.97%
PathConvB-HC+

s 7.82M 2.50G 91.01% (-2.96%)
PathConvB-Hs 7.82M 2.49G 94.12% (+0.15%)
PathConvB-ZC∗

s 7.82M 2.50G 93.56%
PathConvB-ZC+

s 7.82M 2.50G 90.98% (-2.58%)
PathConvB-Zs 7.82M 2.49G 93.23% (-0.33%)

SVHN (s = 32)
PathConvB-HC∗

s 7.82M 2.50G 97.81%
PathConvB-HC+

s 7.82M 2.50G 96.57% (-1.24%)
PathConvB-Hs 7.82M 2.49G 97.23% (-0.58%)
PathConvB-ZC∗

s 7.82M 2.50G 97.58%
PathConvB-ZC+

s 7.82M 2.50G 97.04% (-0.44%)
PathConvB-Zs 7.82M 2.49G 97.31% (-0.27%)

ImageNet-64 (s = 64)
PathConvB-HC∗

s 8.01M 9.98G 68.46%
PathConvB-HC+

s 8.01M 9.98G 62.23% (-6.23%)
PathConvB-Hs 8.00M 9.97G 60.53% (-7.93%)
PathConvB-ZC∗

s 8.01M 9.98G 68.83%
PathConvB-ZC+

s 8.01M 9.98G 63.07% (-5.76%)
PathConvB-Zs 8.00M 9.97G 60.01% (-8.82%)

5.3. The impact of path selection

We now examine the influence of path selection on PathConv
model performance. The results in Table 3 demonstrate
negligible performance variations between HC∗

s and ZC∗

s .
This invariance to path type indicates the robustness of our
path-shifting method, as both paths effectively satisfy the
locality constraint, enabling PathConv models to achieve
performance comparable to ResNet models.

Beyond path types, we also investigate whether |C∗| = 3 is
optimal for PathConv models. To this end, C+ is defined as
a set of c presented in Table 10 (Appendix F) with doubled
cardinality (i.e., P = 6) satisfying the locality constraint.
Meanwhile, the original Hs and Zs are also path candidates
for P = 1. We apply these paths to PathConvB models for
three datasets, with results shown in Table 4.

For small datasets, P = 1 brings limited adverse effects,
occasionally providing better performance (CIFAR-10) than
C∗, while P = 6 results in more severe performance drops.
These findings indicate that PathConv models achieve better
convergence with fewer paths on small datasets, enabling
better results even without satisfying the locality constraint.
Meanwhile, despite PACA, P = 6 exacerbates the prob-
lem of the case (b), impeding model convergence. How-

Table 5. Results for PathConvB-HC∗
s on three datasets following

the ablation of positional encoding and PACA components, with
the coloring scheme in Table 3.

pos. enc. PACA top-1 acc.

CIFAR-10 (s = 32)
✓ ✓ 93.97%
✓ ✗ 90.13% (-3.84%)
✗ ✓ 92.34% (-1.63%)
✗ ✗ 86.23% (-7.74%)

SVHN (s = 32)
✓ ✓ 97.12%
✓ ✗ 94.20% (-2.92%)
✗ ✓ 95.91% (-1.21%)
✗ ✗ 89.77% (-7.35%)

ImageNet-64 (s = 64)
✓ ✓ 68.46%
✓ ✗ 60.93% (-7.53%)
✗ ✓ 63.85% (-4.61%)
✗ ✗ 52.91% (-15.55%)

ever, P = 1 performs significantly worse than C∗ and C+

for PathConvB, as it fails to meet the locality constraint,
thus providing insufficient model capacity for large datasets
(ImageNet-64). In conclusion, |C∗| = 3 perfectly balances
model efficiency and performance. These insights empiri-
cally suggest C∗ as the optimal set for PathConv models.

5.4. Ablation study

We validate that both positional encoding and PACA are
essential for PathConv models by ablation. Table 5 presents
the corresponding results of removing either or both com-
ponents from PathConvB-HC∗

s . These results indicate that
removing either module substantially degrades model per-
formance, with PACA’s removal having a more pronounced
effect. The absence of PACA significantly impairs the abil-
ity of PathConv models to process cases (b). Given the small
#param. requirements for both modules, the architecture of
PathConv models has proven effective and efficient.

6. Conclusion
This paper presents a novel approach to constructing CNNs
using exclusively 1D operations, achieving parameter effi-
ciency while maintaining performance comparable to 2D
CNNs. We introduce a path-shifting method to effectively
preserve the locality of flattened 2D images, requiring only
three paths to outperform trivial raster scan paths. Building
upon this foundation, our PathConv architecture, featuring
path-aware channel attention, matches the performance of
ResNet while using only 1/3 of the parameters across multi-
ple datasets. This work reveals a new paradigm for efficient
CNN design based purely on 1D operations.
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Hilbert, D. Über die stetige Abbildung einer Linie auf
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A. Pixel-wise comparison of locality preservation for multiple resolutions
We extend pixel-wise comparison of locality preservation with the same comparison method and coloring schema as Figure
3 to multiple resolutions. Figure 8 illustrates pixel-wise locality preservation status for Hilbert/Z-order paths compared to
raster scan paths of the same sizes. We can observe that the shape of purple pixels also roughly grows with topological
self-organizing properties, aligning with the recursive definition of both paths.

Hilbert paths

Z-order paths

Figure 8. Applying the same comparison method and coloring schema utilized in Figure 3 with 82, 162, 322, 642 resolutions. Pixels with
shorter cumulative distances to all their neighbors than raster scan paths are in apricot, otherwise purple.

B. Supports for rectangular images
Except for Rs inherently accommodating various resolutions, Hs also supports rectangular images through minor modifica-
tions, such as generalized Hilbert curves (gilbert) (Červený, 2024). Figure 9 (a) shows an example of 18× 21 generalized
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Hilbert path using gilbert. In comparison, original Zs only accepts squares with s ∈ {2n | n ∈ N}, where N is the set of
natural numbers. The proposed path-shifting method manages to fill this gap, as shown in Figure 9 (b). We obtain this
18 × 21 Z-order path by sampling from Z32 with i = 0, j = 5, r = 0. Hence, our shifting method also unintentionally
extends the application scope of Zs for arbitrary image sizes. Consequently, our method could be applied to any image
dataset without compatibility constraints.

(a) 18×21 generalized Hilbert path (b) 18×21 Z-order path by path shifting

Figure 9. 18× 21 paths as examples of paths for rectangular sizes.

C. Reduction to the set cover problem
We first formally describe our problem of determining C with the smallest possible cardinality to meet the locality constraint
and the set cover problem, then show the reduction procedure.

PROBLEM 1 (P1) Minimal C with the locality constraint. Let C = {c1, ..., cn} be the universe of all possible configurations
given s, each configuration cq is associated with

• a binary matrix Mq ∈ {0, 1}s×s representing pixel-wise locality preservation status as shown in Figure 4(d). If a pixel
at [j, k] has shorter distances to its neighbors, Mq[j, k] = 1, otherwise Mq[j, k] = 0.

• a distance measurement dq ∈ N recording the total distance of this path (the same as Table 1).

Determine a subset C ⊆ C minimizing ∑
{dq | cq ∈ C} (1)

subject to the locality constraint ∑
{Mq[j, k] | cq ∈ C} ≥ 1,∀j, k ∈ [0, s) (2)

We formulate this problem as an optimization procedure without loss of generality as minimizing (1) inherently prevents
involving unnecessary paths.

PROBLEM 2 (P2) Weighted Set Cover Problem. Given a universe U , a family of sets F = {F1, ..., Fr}, where each set
F ⊆ U , and a cost function w : F → N. Find a subset F ⊆ F minimizing∑

{w(F ) | F ∈ F} (3)

subject to ⋃
{F | F ∈ F} = U (4)

Reduction. Consider the following reduction η mapping any instance of P1 to an instance of P2 as follows:

• Let U = {[j, k] | ∀j, k ∈ [0, s)}, where each element is a pixel position in P1.
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• For each configuration cq ∈ C, create a set Fq = {(x, y) |Mq[x, y] = 1]}. Then, F = {Fq | i ∈ [1, r]}.

• For every Fq corresponding to cq , let w(Fq) = dq .

Following this mapping, the reduction η respectively suffices to these three properties:

• η is polynomial-time computable, as only O(ns2) operations are required to construct U and F from an instance of P1,
where n is the number of configurations and s2 is the size of images.

• η preserves solution mapping. This is because for any C of an instance of P1, the set {Fq | cq ∈ C} is also a solution to
the corresponding instance of P2, as any pixel (j, k) with Mq[j, k] = 1 corresponds to (j, k) covered by Fq, and vice
versa.

• η maintains solution optimality by construction. For any C of an instance of P1 and its corresponding solution F,∑
{dq | cq ∈ C} =

∑
{w(F ) | F ∈ F}.

Therefore, P1 is polynomial-time reducible to P2. Existing algorithms and theoretical bounds of the set cover problem could
be used to find and evaluate satisfactory C in our problem.

D. More details of obtaining C∗

In the previous section, we have presented detailed steps to map our problem of finding C∗ to an instance of the weighted set
cover problem. This formulation enables us to employ the randomized rounding algorithm (Raghavan & Tompson, 1987), a
widely adopted approach for solving set cover problems.

Let xq be a binary variable indicating whether configuration cq is selected. We reuse definitions in Appendix C. Then,
finding C∗ can be formulated as the following integer linear program (ILP):

minimize ∑
{dqxq | cq ∈ C}

subject to the locality constraint ∑
{Mq[j, k] xq| cq ∈ C} ≥ 1,∀j, k ∈ [0, s),

where xq ∈ {0, 1}. The randomized rounding algorithm begins by relaxing the constraint xq ∈ 0, 1 to 0 ≤ xq ≤ 1, xq ∈ R,
thereby transforming this ILP into a linear program (LP) solvable in polynomial time. After obtaining the optimal fractional
solution x̂, the algorithm executes Φ-round iterations. During each iteration, it selects cq with probability min(αx̂q, 1),
where α denotes a scaling factor. When the selected configuration set satisfies the locality constraint (2), the algorithm
updates the optimal solution if a shorter total distance is achieved. Our implementation utilizes parameters Φ = 30 and
α = 1.2. While employed in this study, the randomized rounding algorithm is not our contribution. Detailed algorithmic
analysis is available in (Raghavan & Tompson, 1987).

Table 6. Comparison of the randomized rounding and greedy algorithms on finding C∗, showing average computational time and the
cardinality of the worst-case solution |C∗|. Greedy algorithm cannot always guarantee |C∗| = 3.

s Path |C| Randomized rounding algorithm Greedy algorithm

avg. time worst case |C∗| avg. time worst case |C∗|

32 Hilbert 39684 67.1s 3 8.3s 3
Z-order 3969 2.0s 3 0.1s 3

64 Hilbert 333316 7134.6s 3 634.6s 4
Z-order 16129 321.7s 3 51.9s 4

While the randomized rounding algorithm provides a theoretical approximation ratio of O(ln s2) with high probability
(Feige, 1998), its computational cost significantly exceeds that of the trivial greedy algorithm (Table 6). This motivates
an investigation into whether the greedy algorithm can achieve comparable solution quality with reduced computational
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One-dimensional Path Convolution

Table 7. Runtime comparison between our CUDA kernel for image traversal and its CPU counterpart for varying batch sizes, s, and the
number of paths P . Each measurement represents the average execution time over 1,000 iterations, recorded in milliseconds (ms).

batch size s
P = 3 P = 5

CPU Ours CPU Ours

128
32 0.755ms 0.083ms ( 9.112x) 0.830ms 0.076ms (10.909x)
64 1.648ms 0.075ms (22.065x) 2.400ms 0.094ms (25.489x)

224 25.920ms 0.369ms (70.250x) 33.891ms 0.555ms (61.026x)

512
32 1.506ms 0.077ms (19.521x) 2.141ms 0.093ms (22.933x)
64 8.074ms 0.158ms (51.181x) 10.070ms 0.212ms (47.393x)

224 80.864ms 1.319ms (61.287x) 123.716ms 2.091ms (59.166x)

1024
32 4.083ms 0.105ms (38.860x) 5.297ms 0.133ms (39.962x)
64 15.877ms 0.253ms (62.823x) 21.508ms 0.366ms (58.690x)

224 190.583ms 2.587ms (73.659x) 254.165ms 4.160ms (61.101x)

Table 8. Training settings of PathConv models for three datasets.

Setting CIFAR-10 SVHN ImageNet-64

initial learning rate 4e-3 4e-3 1e-2
weight decay 2e-4 2e-4 2e-4

optimizer AdamW AdamW AdamW
optimizer momentum β1, β2 = 0.9, 0.999 β1, β2 = 0.9, 0.999 β1, β2 = 0.9, 0.999

batch size 512 512 384
scheduler cosine annealing cosine annealing cosine annealing

warmup epoch 10 10 10
warmup schedule linear linear linear

RandAugment 7 7 9
Mixup - - 0.2

CutMix - - 0.6
label smoothing 0.05 0.05 0.05

overhead. We implement the greedy solver by iteratively picking c that covers the most pixels with longer distances to
their neighbors than raster scanning. Table 6 provides the comparison results of using randomized rounding and greedy
algorithms to find C∗. The average computational time is calculated across three executions of each algorithm. Despite the
significantly shorter computational time of the greedy solver, it does not consistently guarantee |C∗| = 3. Consequently, the
randomized rounding algorithm remains the preferred choice, particularly given that C∗ computation is required only once.

E. CUDA implementation of the path sampling layer and efficiency comparison
We implemented a specialized CUDA kernel to accelerate the image traversal procedure and integrated it into the path
sampling layer for maximum efficiency. The kernel assigns one thread per pixel position to compute its corresponding index
in the resulting 1D pixel stream. We specify 256 threads grouped together for every CUDA block, enabling shared GPU
memory access, cooperation, and synchronization among threads within each block. Table 7 compares runtimes between our
CUDA kernel implementation and CPU version for varying batch sizes, s, and the number of paths P on 1 NVIDIA A100
GPU. Our CUDA kernel achieves up to 73.659-fold acceleration compared to the CPU implementation, demonstrating the
efficiency of the path sampling layer.

We emphasize that the image traversal procedure is read-only, enabling optimization through various parallel processing
approaches. Our CUDA implementation here is one example, selected here due to its direct benefits for model training.
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Table 9. Training settings of ResNet/WRN models for three datasets.

Setting CIFAR-10 SVHN ImageNet-64

initial learning rate 2e-2 2e-2 2e-2
weight decay 2e-4 2e-4 2e-4

optimizer SGD SGD SGD
optimizer momentum 0.9 0.9 0.9

batch size 512 512 384
scheduler cosine annealing cosine annealing cosine annealing

warmup epoch 10 10 10
warmup schedule linear linear linear

RandAugment 7 7 9
Mixup - - 0.2

CutMix - - 0.6
label smoothing 0.05 0.05 0.05

Table 10. The configurations denoted as C+ satisfying the locality constraint when |C+| = 6 for Hilbert and Z-order paths. We specify
C+ for Section 5.3 to investigate the impact of path selection.

Path s Configurations (C+)

Hilbert 32/64
{ 0, [ 0, 0], 0}, { 5, [ 0, 4], 0},
{ 0, [ 4, 0], 0}, { 0, [ 4, 4], 0},
{ 0, [ 2, 2], 0}, { 0, [ 2, 4], 0}

Z-order

32
{ 0, [ 0, 0], 0}, {32, [16, 26], 0},
{32, [14, 16], 180}, {32, [12, 20], 180},
{32, [ 8, 4], 0}, {32, [ 4, 8], 0}

64
{ 0, [ 0, 0], 0}, {64, [36, 32], 270},
{64, [36, 34], 90}, {64, [28, 32], 0},
{64, [ 4, 8], 0}, {64, [ 8, 4], 0}

F. Experimental settings
We provide detailed training settings for PathConv models and 2D CNNs in Table 8 and Table 9, respectively. We do not
apply weight decay on all normalization layers (LN). To ensure a fair comparison, all models are trained from scratch.
This eliminates confounding factors from transfer learning and allows direct attribution of performance differences to
architectural choices.

To investigate the impact of path selection, we also specify C+ with |C+| = 6 for Section 5.3 as given in Table 10.
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