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Abstract

Static cross-view geo-localization datasets fail to cap-
ture the dynamic nature of real-world environments, as they
do not account for rapid urban development and seasonal
changes. As a result, models trained on such datasets expe-
rience degraded performance when confronted with more
recent data, as they struggle to adapt to temporal varia-
tions such as newly constructed buildings or changing land-
scapes. To accurately assess the performance gap and eval-
uate model robustness, it is essential to use temporally di-
verse data that allows us to measure how well models can
handle temporal shifts and remain resilient to such changes.
To address this need, we have enriched the CVUSA dataset
with recent satellite and Street View imagery, creating the
CVTemporal dataset. This enhanced dataset is critical for
testing how well geo-localization models can adapt to tem-
poral discrepancies and identify persistent, invariant fea-
tures.

In this work, we also examine the impact of temporal
changes on the performance of selected well-known cross-
view geo-localization models.Furthermore, we present a re-
ranking approach based on existing satellite imagery from
both datasets, which leads to significant performance im-
provements. Despite temporal variations in the data we
achieve with our models remarkably good results especially
on R@1. Additionally, we investigate strategies for identi-
fying which temporally changed data should be collected to

update pre-trained models, minimizing the labor-intensive
process of recollecting entire datasets. Experiments with
the CVUSA datasets demonstrate that it is possible to im-
prove temporal alignment and model performance with only
a small fraction of newly collected data.

1. Introduction

Accurate geo-localization is the foundation of many
technological applications. It is critical for autonomous
driving, enabling vehicles to navigate seamlessly and man-
age route uncertainty [1, 5]. In agriculture, precise loca-
tion data underpins targeted pesticide application, increas-
ing efficiency and sustainability [3]. In tourism, customized
self-guided tours use localization to enhance the visitor ex-
perience [7]. Urban environments are complex and in-
clude buildings as well as other structures that can interfere
with satellite signals, a phenomenon known as the urban
canyon effect. To address these challenges, cross-view geo-
localization presents a viable alternative or an additional re-
finement. This technique matches real-time street-level im-
agery from vehicles against a database of satellite images
with known coordinates. The geo-position of the vehicle is
then determined based on the satellite image that best aligns
with the Street View. Recent advancements in cross-view
geo-localization are leveraging deep learning for image re-
trieval, utilizing deep learning models to embed both satel-
lite and street-level images [4,16,20,22,29,31]. The process
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Figure 1. Examples of the new CVTemporal dataset. On the left, we observe structural changes (red) that appear in both the new satellite
image and street image, whereas in version 1.0, these are not present. On the right side, we see different light influences (yellow) or changes
in the flora (turquoise).

involves searching for the nearest neighbor based on simi-
larity metrics, like cosine similarity, to find the best match.

Despite advancements in geo-localization datasets [10,
22, 24, 30], the geo-temporal dynamics reflecting contin-
ual environmental and structural changes remain underex-
plored. Seasonal shifts, weather impacts on road conditions,
and urban developments dramatically alter landscapes, yet
existing work [15, 25] has not fully captured these dynam-
ics. Our contribution leverages updated Street View and
satellite imagery to analyze temporal shifts, thus offering
a deeper understanding of geo-temporal dynamics in cross-
view geo-localization.

To address the challenge of outdated geo-localization
data, we introduce the CVTemporal dataset, an enhanced
version of the original CVUSA dataset [22], which includes
newly collected Street View and satellite imagery from the
same locations. This update better reflects current envi-
ronmental conditions, as shown in Figure 1. Our primary
goal is to provide a robust resource for evaluating state-of-
the-art geo-localization models under real-world temporal
variations. We begin by evaluating several baseline mod-
els, widely accepted in the community, that have been pre-
trained on the original CVUSA 1.0 dataset. Based on this
evaluation, we identify the best performing model as the ba-
sis for further optimization. Our focus is on improving its
effectiveness against temporal changes.

Given the labor-intensive process of updating Street
View data, we use the more readily available satellite im-
agery to estimate which specific Street View segments need
to be updated. This targeted approach ensures that we can
significantly improve the model’s adaptability to temporal
changes without the need for extensive data recollection. In
addition, we are exploring a re-ranking strategy using older

satellite data to further refine the model’s performance, with
the goal of balancing efficient data management with main-
taining robust and accurate geo-localization capabilities.

To summarize, our key contributions in this work are:

• The introduction of CVTemporal, an enhanced geo-
localization dataset incorporating the latest satellite
and Street View imagery as a baseline to assess the
impact of temporal variations.

• A comprehensive evaluation of state-of-the-art cross-
view geo-localization models, pinpointing their defi-
ciencies in temporal robustness.

• We investigate selection strategies to determine the
minimum amount of newly collected data needed to
effectively update our model, allowing it to adapt to
temporal shifts using both current and historical satel-
lite imagery.

2. Related Work
The first dataset for cross-view geo-localization,

CVUSA, introduced by Workman et al. [22] featured over
1.5 million geo-tagged street and Flickr images correspond-
ing to 880k aerial views. The images are distributed over
the whole USA and feature a wide variance of different ur-
ban and rural areas. In their work, they used off-the-shelf
CNN features for geo-localization. In a further iteration
of the dataset, Zhai et al. [24] sampled a smaller subset of
44, 416 satellite and Street View pairs to train a deep learn-
ing pipeline for cross-view geo-localization.

The distinct flora and architectural elements of each lo-
cation call for representative datasets of the area of interest.
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Liu et al. [10] collected CVACT with an urban-focused set-
ting around Canberra (Australia), whereas the University-
1652 [27] dataset is set around university buildings.

More datasets have been compiled over the years to ac-
commodate the emergence of various new subtasks and
challenges in the field of geo-localization [9,14,17]. Unlike
University-1652, SUES-200 [28] captures various scenes
around a university in Shanghai at four different altitudes
from 50 drone views, totaling 40k images. The scarcity of
panoramic views in numerous regions of the world moti-
vated the collection of sequences of limited Field-Of-View
images in [26]. The spatial embeddings retrieved from
the ground image sequence are consolidated with a Tem-
poral Feature Aggregation Module. To enrich the non-
panoramic geo-localization problem with valuable informa-
tion, Vyas et al. [19] introduce the first cross-view video
dataset. GAMa consists of 51, 535 ground videos, 40 sec-
onds each, selected from the BDD100k dataset [23], paired
with a matching large overhead image. For each one-second
clip, GPS data is employed to extract a centered tile from
the aerial view, which is input to the localization network
with an aerial image encoder and a ground video encoder.

In their recent work, Ma et al. [12] take on the cross-time
challenge and propose MTGL40-5, a multi-temporal geo-
localization dataset solely for high-resolution satellite views
of ports and airports. MTGL40-5 highlights the substan-
tial changes in the satellite images over five years, which
impair the cross-time image matching accuracy. Similarly,
the Cross-View Time (CVT) dataset proposed by Salem et
al. [15] comprises over 98k ground views sampled from 50
outdoor webcams, capturing various seasons and different
times of the day.

The task of Temporal Domain Adaption in Earth Obser-
vation applications necessary due to temporal distribution
shifts for the same geographical area is an under-explored
topic, considering the short revisit time of satellites. To the
best of our knowledge, Capliez et. al [2] is the latest of
the few works to research this topic in depth, focusing on
temporal transfer learning in land cover mapping between a
source and a target year (domain).

3. CVTemporal

3.1. Problem Statement

Current datasets like CVUSA 1.0 [22, 24], CVACT [10]
and VIGOR [30] for cross-view geo-localization are static
and do not represent an important aspect of the world,
namely the temporal dimension. Other dynamic datasets
like CVT [15] or MTGL40-5 [12] choose not to use Street
View images and thereby miss out on their detailed visual
information. Additionally, both datasets are limited to a sin-
gle view, either ground-level or satellite, which results in
less precise and robust outcomes. As we show in Figure 1,

our enhanced version of the CVUSA dataset features dif-
ferent aspects of temporal variations, e.g., changes in build-
ing structures, seasonal changes in vegetation, or improved
quality of the captured images.

3.2. Data Collection

For our data collection, we use the provided locations
of the CVUSA 1.0 dataset. We query the BingMap API
for satellite imagery, and due to its tile-based nature, we
sample a 5× 5 grid around the given location. The original
version of the dataset is center-aligned, meaning that the
Street View is captured in the center of the satellite imagery.
Using the GPS coordinates provided by the BingMap API,
which originate from the upper left corner of the imagery,
we calculate the necessary offset to accurately align the old
and new images, and then crop them to a uniform size of
750× 750 pixels. We use the same zoom level of 19, which
corresponds to a scaling of 30 centimeters per pixel.

To acquire the 360° panorama views, we use the pro-
vided locations to sample the newest available images. For
both satellite and Street Views, some of the imagery was
taken before 2015, so these images are not very different
from those in the original CVUSA dataset. Unlike CVUSA
1.0, which crops out the top and bottom of Street View
images to omit unnecessary sky and street details, we re-
tain this information in our dataset. This decision allows
us to capture important features, such as high-rise build-
ings and street markings, that are essential for accurate geo-
localization. As a result, our Street View images have a
resolution of 1024×2048, compared to the 224×1232 res-
olution used in CVUSA 1.0. Depending on when the street
images were taken, there are black borders in the lower
part of the image which we crop, and then resize the im-
ages to 1024× 2048 to have the same proportions as newer
street images. Furthermore, we align the images similar to
CVUSA 1.0 by the given orientations. As a result, the ge-
ographic north is in the middle of the street image and the
upper middle of the satellite image. An example of this ori-
entation can be found in the supplementary material.

3.3. Dataset Statistics

Our CVTemporal dataset consists of 35, 313 training and
8, 828 validation pairs. It is compatible with the version 1.0,
allowing for evaluations between new satellite images and
old Street View images, and vice versa. The slight differ-
ence in the number of images is due to occasional unavail-
ability of images from the API. In Figure 2, we show the
capture date distribution of the acquired images for both the
satellite and the street images. This statistic also confirms
our assumption that new satellite images are easier to ob-
tain, as about 99.65% of all satellite images are acquired
after 2015. The situation is different for panoramic images,
where only about 56.81% are acquired after 2015. 2015 was
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Figure 2. Distribution of the recording date of the satellite images
(above) and the street images (below) in 6-month aggregation.

chosen as the criterion because CVUSA 1.0 was crawled in
this year. In both cases, however, the APIs did not provide
timestamps for every image, so we can only assume that the
data distribution remains the same for the images without
timestamps.

3.4. Temporal Data Distillation for Geo-localization

Our analysis shows that satellite imagery is updated
more frequently than Street View imagery, making it a valu-
able indicator for identifying which Street Views need to be
refreshed to reflect the latest environmental and structural
changes. Similar to dataset distillation [21], which con-
denses a dataset to its most essential elements for model
training, our approach focuses on pinpointing the most im-
pactful parts of the dataset that require updating. This al-
lows us to selectively refresh the data rather than indiscrim-
inately updating the entire dataset, ensuring that the model
remains current and effective with minimal effort.

We propose to use the frequent updates of satellite im-
agery as a metric to guide our selective refresh of Street
View data. This method not only prioritizes recollection
efforts toward areas of significant change, but also aligns
with the broader goal of maintaining a lean, efficient dataset
that adapts over time without the exhaustive resource re-
quirements typically associated with full data recollection.
In Section 4.2, we explore various strategies for using up-
dated satellite imagery as a strategic filter to effectively se-
lect which data segments should be recollected. This en-
sures that our geo-localization models remain both accurate

and adaptable to temporal changes without the unnecessary
overhead of broader data collection.

4. Methodology
In our first experiments, we test the generalization of

previously trained approaches. Therefore, we compare
four well-known models TransGeo [29], SAIG-D [31],
CDE [18] and Sample4Geo [4] on the new data. All models
are pre-trained on CVUSA 1.0 and through the different ar-
chitectures we feature a wide range of comparisons. Since
the resolution and the aspect ratio changed between the two
versions of CVUSA we adapt the inference resolution. To
allow a fair comparison between the individual models, we
crop the upper and lower parts of the Street View evenly, but
not the width. This reflects the aspect ratio of CVUSA 1.0
where this crop was also used. Thus, we use the same aspect
ratio on which they were trained for the comparison of all
models. Figure 3 provides an overview of the initial phase
of our experiments. All models utilize an image encoder
pre-trained on CVUSA 1.0. During inference, we introduce
the newly acquired satellite and Street View imagery, en-
code both, and use cosine similarity to determine a local-
ization match. As illustrated in the Figure 3, some environ-
mental changes are quite drastic, and while both the satellite
and Street View images capture these changes, the models
struggle to generalize to these new conditions. We evaluate
both versions of the dataset to demonstrate the degradation
in performance when images from the same locations, but
taken at different times, are used for inference.

4.1. Model Overview

TransGeo is tested with 320×320 for the satellite images
and 112 × 616 for the Street View images. For the MLP-
Mixer approach SAIG-D, we stick to the resolution 256 ×
256 for the satellite images and 128 × 512 for the Street
View images. Similarly, we need to resize to 112 × 616 as
the input resolution for CDE and 256× 256 for the satellite
images. Toker et al. adapt a GAN to translate the satellite
image into a street image to make the subsequent matching
task easier, thus the SAFA-retrieval model [16] receives the
112× 616 size for both views. Sample4Geo [4] infers with
384 × 384 for the satellite images and 140 × 768 for the
Street View images.

All four architectures are contrastively trained, with the
difference that TransGeo, CDE, and SAIG-D use triplet
loss, and Sample4Geo uses InfoNCE loss. Additionally,
Sample4Geo uses hard negative sampling to leverage harder
examples during training.

After selecting the best-performing model from our eval-
uations, we re-train it on all newly collected data to establish
an upper performance benchmark achievable with the most
recent dataset. We then select a small, strategically cho-
sen portion of this newly acquired data to fine-tune another
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Figure 3. Examples of the CVUSA 1.0 satellite images (purple), CVTemporal (blue) and the predictions during inference with a pre-trained
model [4]. While the model can correctly assign the lower satellite image, it fails with the upper one, although temporal changes can be
seen on both. The performance bar chart indicates the performance drop for several approaches [4, 18, 29, 31] between the two versions of
the CVUSA dataset and highlights the challenge of temporal alignment.

Cluster 2

K-Means 
Clustering

CVUSA 1.0  CVTemporal
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Cluster 1

Figure 4. Our selection strategy based on satellite imagery. We
apply k-Means Clustering to both historical and recent satellite
images, creating pseudo-classifications without explicit labels. By
evaluating the deviations between clusters of old and new images,
we accurately select the samples needed for adaptation training.

model that has been pre-trained on the older dataset. The
purpose of this step is to measure how closely we can match
the performance of the fully updated model using only a
minimal subset of the new data.

4.2. Data Selection Strategies

In our effort to refine model training with strategically
selected data, we compare three different selection strate-
gies.

The first strategy is straightforward: after collecting all
the images, we evaluate the model’s performance to de-
termine which training examples are incorrectly predicted.
This method allows us to directly assess the value of both
correctly and incorrectly predicted data points for refining
the model. However, this approach is only practical when
the entire dataset has already been collected, and serves pri-
marily as a first step in assessing the usefulness of the infor-
mation.

The second strategy uses simple vector change analy-

sis. This method quantifies the magnitude of differences by
measuring changes in feature vectors between new and ex-
isting satellite images. While this technique provides a sim-
ple way to detect significant changes, it overlooks important
issues such as spatial coherence and contextual relevance.

The third strategy, illustrated in Figure 4, uses k-Means
clustering to categorize both historical and recent satellite
images using feature vectors from a pre-trained model in the
absence of labels. This pseudo-classification method groups
paired old and new images, allowing for the detection of
significant shifts in cluster membership. Images with minor
changes remain clustered together, while those with signif-
icant deviations form new clusters. This not only empha-
sizes visual and spatial relationships, but also enhances con-
trastive training through implicit hard negative sampling.
As suggested in [4], the use of hard negatives, which are
visually similar but differently categorized images, is bene-
ficial for training models using the InfoNCE loss function,
thereby improving the effectiveness of the model by empha-
sizing more challenging comparisons.

4.3. Time-invariant Re-Ranking

We propose a simple but effective re-ranking strategy
using historical satellite data. Typically, a similarity ma-
trix (e.g., cosine similarity) is computed between satellite
and Street View features to match images and determine
geo-locations. In our approach, we extract features from
satellite images over two time epochs, CVUSA 1.0 and the
newly collected CVTemporal, and fuse them by computing
their mean. This fusion creates features approaching time
invariance that emphasizes consistent geographic elements
and improves robustness to temporal changes. The advan-
tage of this approach is its scalability - as satellite imagery
from additional time steps becomes available.
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4.4. Implementation Details

For our contrastive training, we apply the InfoNCE loss
as in Sample4Geo. When adapting the pre-trained Sam-
ple4Geo, we train for 10 epochs, using a learning rate of
5e−4 with a cosine decay schedule and a warm-up of 1
epoch. Conversely, retraining on the full dataset involves
40 epochs with a learning rate of 1e−3 and initialization
from an ImageNet pre-trained ConvNeXt-Base [11]. Both
training strategies involve augmenting the images with ran-
dom rotation, horizontal flipping, color jitter, blur, sharp-
ening, grid dropout, and coarse dropout. Specifically, for
random rotation, we rotate the satellite view in 90-degree
increments and then roll the pseudo Street View accordingly
to maintain alignment.

5. Evaluation

5.1. Pre-trained on CVUSA 1.0

In our experiments, we evaluate the four state-of-the-art
models from Section 4.1 with various data. The initial tests
with CVUSA 1.0 establish the baselines. Afterward, we
evaluate the models in different settings using the CVTem-
poral dataset. In the first setting (CVTemporal New Sat), we
replace the satellite images with the newly captured ones. In
the second setting (CVTemporal New Pano), we swap only
the Street Views and in the last setting, both image sources
are replaced by all newly captured images. As mentioned
before, for testing we crop the test images by keeping the
same aspect ratio to look similar to the training images from
CVUSA 1.0. Otherwise, depending on the approach, the
performance drops even more than what is recorded in Ta-
ble 1, as we show in our supplementary material.

Table 1 indicates that the Sample4Geo approach out-
performs others in handling temporal variations in images,
demonstrating superior generalization. Models with higher
scores on CVUSA 1.0 generally maintain their performance
on version 2.0, with TransGeo being an exception. Notably,
Sample4Geo, a CNN-based model, exhibits significant re-
silience to image changes, particularly when only one type
of input is updated.

It’s worth noting that new satellite imagery results in a
less sharp performance decline than introducing new Street
View imagery. In particular, the Sample4Geo approach
shows only minimal performance degradation under these
conditions. This is likely because the dominant feature used
for mapping to Street View data - the overall road structure
- remains largely consistent in most satellite images, even
when new data is introduced. As we can observe, there is
a strong performance decrease as soon as both views are
updated, underlining our proposal to strengthen temporal
alignment.

Dataset R@1 R@5 R@10 R@1% ∆ in % for R@1
CVUSA 1.0
CDE [18] 92.56 97.55 98.33 99.57 -
TransGeo [29] 94.08 98.36 99.04 99.77 -
SAIG-D [31] 96.08 98.72 99.22 99.86 -
Sample4Geo [4] 98.68 99.68 99.78 99.87 -

CVTemporal (New Sat)
CDE [18] 84.87 93.88 95.81 98.96 −9.06%
TransGeo [29] 81.48 92.78 95.04 98.81 −15.46%
SAIG-D [31] 88.19 96.12 97.51 99.42 −8.94%
Sample4Geo [4] 95.21 98.51 98.96 99.61 −3.64 %

CVTemporal (New Pano)
CDE [18] 76.46 87.39 90.39 96.09 −21.05%
TransGeo [29] 75.04 89.97 93.04 98.19 −25.37%
SAIG-D [31] 81.64 92.31 94.59 98.34 −17.68%
Sample4Geo [4] 91.30 96.04 97.02 98.56 −8.08%

CVTemporal
CDE [18] 73.78 85.48 88.66 94.99 −25.45%
TransGeo [29] 68.66 84.94 89.06 96.83 −37.02%
SAIG-D [31] 79.11 90.00 92.78 97.85 −21.45%
Sample4Geo [4] 89.13 94.87 96.11 98.04 −10.71%

Table 1. Comparison between state-of-the-art approaches pre-
trained on CVUSA 1.0 and evaluated on both versions of the
CVUSA dataset. The aspect ratio of the new Street View images
are adjusted to match the appearance of the CVUSA 1.0 dataset.
In our supplementary we provide results without this adjustment.

5.2. Training on CVTemporal

After evaluating several approaches, we selected Sam-
ple4Geo [4] as our base model due to its relatively low loss
of generalization compared to other methods tested. Our
goal is to equalize the performance of CVUSA 1.0 and
CVTemporal datasets, using only a small portion of data
for retraining. Therefore, we test different selection strate-
gies in Table 2, where the subset indicates the amount of
training data used. In addition to our selection strategy, we
emphasize the impact of our proposed re-ranking method,
which provides an additional performance boost. We con-
ducted experiments using 1 %, 5 %, 10 %, 20 %, and 30 %
(denoted as x) of the dataset to highlight the importance
of proper selection strategies on smaller subsets. While
30 % gives the best results, the 10 % subset seems to be a
good compromise between computational cost and achiev-
able performance, since false predictions are only 10.87 %.
We report the remaining subset portions in our supplemen-
tary material. To compare what the maximum achievable
performance is, we also train the Sample4Geo model on the
full dataset, denoted by 100 %.

However, the false prediction approach results in poor
performance due to label noise and the presence of ex-
amples that are particularly difficult to distinguish. These
hard examples, if overly difficult, can degrade model per-
formance. The second selection method (Magnitude) uses
the magnitude of the vector change between the old and
new satellite images. We select x% of the samples with the
largest change and achieve an improvement over the false-
prediction selection.
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Model Type R@1 R@5 Trained on Subset
CVUSA 1.0 CVTemporal

Baseline 89.13 94.87 X - 100%
Baseline + ReRank 92.64 96.45 X - 100%
False preds 91.40 97.97 - X 10%
Magnitude 91.75 97.55 - X 10%
Clustering 92.10 97.53 - X 10%
Clustering + ReRank 94.65 98.51 - X 10%
False preds 93.70 98.70 - X 30%
Magnitude 93.71 98.44 - X 30%
Clustering 93.95 98.44 - X 30%
Clustering + ReRank 95.60 99.00 - X 30%
Full 95.00 98.44 - X 100%
Full 95.48 98.83 X X 100%
Full + ReRank 97.21 99.24 X X 100%

Table 2. Comparison of Selection Strategies: Training on the
full dataset with re-ranking delivers the best overall performance.
However, when training on a subset of the data, the k-Means clus-
tering method with re-ranking outperforms other selection strate-
gies, achieving the highest R@1. The metrics R@1 & R@5 are
reported on the validation split of the CVTemporal dataset.

Our third selection method (Clustering) based on k-
Means clustering performs best when only training on x%
of the newly collected imagery. Once we introduce histor-
ical satellite data as a re-ranking in our inference, denoted
by ReRank in Table 2, the performance improves further.
Through this combination, we achieve competitive perfor-
mance when compared to a full retraining (Full) on the
CVTemporal dataset. Through our re-ranking, where we
extract and average the features from the old and new satel-
lite images, we created time-invariant features. Since the
uneven data distribution shown in Figure 2 indicates that
satellite imagery is updated more frequently, while some
Street View imagery remains outdated, features from his-
torical satellite imagery are beneficial in inference because
they help align with older Street View data that may not re-
flect recent changes. To assess whether re-ranking benefits
model training on new data, we re-ranked the Full model
predictions using the old satellite images (Full+ReRank).
Performance improved, likely due to the aforementioned
distribution.

Our results confirm the effectiveness of the clustering
method described in Section 4.2 and demonstrate its su-
perior performance when training on a subset of the data
without prior knowledge of which data to update. The re-
ranking strategy we explore improves performance by pro-
viding time-invariant features that are applicable both when
training on a subset and when retraining on the full dataset.
This approach effectively narrows the performance gap and
maintains competitiveness in the field.

6. Ablation and Visualization
In our ablation study, we explore the optimal selection

of k-Means cluster size for effective data categorization. In

Cluster Size R@1 R@5 R@10 R@1%
5 92.03 97.37 98.32 99.58
10 92.00 97.44 98.53 99.64
20 92.10 97.53 98.53 99.64
30 92.07 97.50 98.53 99.69

Table 3. Comparison between different cluster sizes based on
the 10 % clustering subset.

Figure 5. Heatmaps for a correct prediction with our adaption
model. CVUSA 1.0 data (left satellite and upper Street View im-
ages) show clear temporal changes compared to the CVTemporal
images (right satellite and bottom Street View). The model still
focuses on the street layout, with new building information play-
ing a minor role.

addition, we provide visual insights into examples where
temporal changes are evident, enhancing our understanding
of the dynamics of the model’s performance.

6.1. Cluster Size

In our analysis of different k-Means cluster sizes, see Ta-
ble 3, we found that the number of clusters did not signifi-
cantly affect the overall performance improvement. Despite
varying cluster sizes, all configurations consistently outper-
formed other methods such as change vector analysis and
using incorrectly predicted samples for selection. This sug-
gests that while the choice of cluster size is flexible, the shift
in cluster assignment is more critical to improving model
performance.

6.2. Visualization

Human spatial reasoning employs landmarks such as
streets, buildings, and vegetation. The investigation of our
fully trained model’s activations, as shown in Figure 5, re-
veals analogous patterns. Selected examples illustrate ac-
curate predictions amidst significant structural changes, in-
cluding new constructions and altered vegetation. The com-
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Figure 6. Geographical Distribution of Model Predictions: Predictions are aggregated in a 50×50 grid to examine regional performance
discrepancies. The plot demonstrates areas where model performance varies, highlighting regions with frequent prediction errors and
showing an overall improvement in model accuracy. Grey areas indicate that there are no samples from the dataset in this area.

parative analysis utilizes satellite and Street View images
from the CVUSA 1.0 dataset against activations from the
CVTemporal dataset.

The findings indicate minimal variation in model activa-
tions over time, with a predominant reliance on basic fea-
tures like road layouts, and a lack of emphasis on new build-
ings. This underscores our assertion that temporal align-
ment remains unresolved, with the model adopting a sim-
plistic approach to learning.

In our ablation study, we examined the geographic distri-
bution of predictions by grouping them into a 50× 50 grid,
Figure 6. This allowed us to assess whether the model had
difficulty with certain regions. The analysis revealed that
regions with higher rates of incorrect predictions tended to
be remote areas characterized by roads with few distinctive
building features. These areas pose significant challenges
to the model, primarily due to the lack of unique landmarks
and the homogeneity of the surrounding vegetation typical
of these geographic regions. Such environments often result
in higher confusion rates, especially when the model relies
on less diverse features to make predictions.

7. Conclusion

In this work, we present CVTemporal, an enhanced ver-
sion of the established CVUSA dataset that allows for more
accurate evaluation of cross-view geo-localization mod-
els under temporal variations. As the world continues to
change, it is critical to have diverse datasets that reflect
these temporal shifts and provide a robust basis for further
evaluation of model performance. CVTemporal provides a
rich variety of conditions to address the evolving challenges
posed by temporal variations, setting a new benchmark for
evaluating cross-view geo-localization models in dynamic
environments.

Our approach improves model performance by combin-
ing targeted data selection with a powerful re-ranking strat-

egy that leverages historical data. While identifying spe-
cific Street Views for updating improves performance after
retraining, the re-ranking approach itself provides signifi-
cant gains without additional training. This re-ranking tech-
nique consistently improves temporal alignment and outper-
forms baseline models, whether the models are retrained or
not. Together, these strategies demonstrate that with careful
data selection and the application of re-ranking, models can
effectively adapt to ongoing change while minimizing the
need for extensive new data collection.

8. Discussion

Our experiments on the CVTemporal dataset vividly il-
lustrate the significant impact that data refreshing has on
model performance. Consistent updating of the dataset is
critical, as evidenced by the notable improvements in mod-
els trained on fresh data.

However, there is a caveat to the timestamp distribution
in Figure 2: not all Street View images are updated, which
may lead to an overestimation of performance improve-
ments. Pre-trained models are likely to perform similarly
on unchanged images, suggesting that our performance es-
timates may be overly optimistic. This underscores the im-
portance of a more thorough investigation of the update pro-
cess to ensure truly comprehensive updates.

Additionally, enhancing model adaptability and under-
standing for complex geo-localization scenarios requires
the integration of diverse spatiotemporal factors into our
datasets. Including temporal dependencies, spatial hetero-
geneity, and varying zoom levels will enable models to
more effectively handle challenges such as cross-country
or temporally variant geo-localization and variations in im-
age resolution. This approach aligns with recommendations
by [6, 8, 13] and is vital for advancing the field of geo-
localization.
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