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Abstract. Over time, the peculiarities of point clouds
brought forth ample dedicated and specialized solutions
for analyzing and managing point cloud data. However,
providing analytical capabilities and visualization at scale
remains challenging. We present a next-generation point
cloud data management approach inspired by the Lake-
house pattern. It is exemplified by combining point clouds
stored in raw files with a query engine, which instantly
gives us an analysis-ready database management system
with an SQL and DataFrame interface. We further demon-
strate how to simplify and optimize this system through
conversion to a columnar file format and a novel versatile
repartitioning approach. Compared to existing solutions,
the evaluation exhibits compelling performance, extraor-
dinary flexibility, and exceptional simplicity.
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1 Introduction

There are ample specialized solutions to store, manage,
visualize, and analyze point cloud data, each addressing
shortcomings of traditional, generic data management sys-
tems (Isenburg, 2013; Schütz, 2016; Butler et al., 2021).
However, scalability remains challenging, and the interop-
erability and integration with the broader big data analytics
ecosystem require expensive transformation and conver-
sion steps, leading to time-consuming data ingestion, du-
plication, and data amplification (Lokugam Hewage et al.,
2022; Melnik et al., 2010; Yang et al., 2024).

A proposition to mitigate the high amount of process-
ing time spent on record shredding, (un)marshaling, and
(de)compression occurring throughout the whole point
cloud data life cycle is the NoDB philosophy, which in-
troduced a paradigm that proposes to access raw data

Figure 1. Lakehouse architecture for point cloud data analytics.

files directly through a query engine (Alagiannis et al.,
2012). Various dedicated point cloud data formats have
been evaluated for ad-hoc querying with promising re-
sults (Bormann et al., 2024). Advancements in file-based
solutions for big data analytics culminated in the Lake-
house architectural pattern targeted at cloud environments
(Armbrust et al., 2021). It promotes decoupling comput-
ing and storage, embraces the NoDB philosophy of direct
access to raw files, and relies on formats with chunked
columnar layouts, including statistics and variable encod-
ing schemes aiding storage efficiency and retrieval perfor-
mance.

The main contribution of this paper is to establish a flex-
ible data representation scheme for point clouds based on
recent developments in the big data community and an
evaluation of the implied performance for a selection of
queries executed on real-world datasets. The evaluation
shows that by adopting these widely accepted big data
technologies, point cloud data can be scalably processed
and visualized in the context of big data applications.

2 Related Work

Traditionally, large point clouds are provisioned as a col-
lection of files and processed with tools such as PDAL
(Butler et al., 2021) or LAStools (rapidlasso, 2007). Vi-
sualization commonly relies on dedicated formats such as
Potree (Schütz, 2016) with levels of detail (LoD) based
on layered space partitioning schemes (Gobbetti and Mar-
ton, 2004). However, these solutions do not accommodate
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general-purpose and user-defined analytics and visualiza-
tion workloads simultaneously, as their internal data struc-
tures and domain-specific language interfaces require ded-
icated tooling for creation and data access.

Database management systems (DBMS) gained popular-
ity for point cloud data management integrating declara-
tive interfaces, indexing capabilities, and scalability. Still,
the relational model, combined with flat tables, fails to
cope well with excessive amounts of point records, which
provoked custom extensions to organize point clouds in
patches or exploit space-filling curves to map multidimen-
sional point clouds to a single dimension (pgPointcloud,
2013; van Oosterom et al., 2015; Psomadaki et al., 2016;
Cura et al., 2017; Meijers, 2022).

Distributed systems and NoSQL-based solutions like
MongoDB, Casandra, AtlasHDF, or Hadoop were ex-
plored in response to issues with the relational model
(Deibe et al., 2018; Vo et al., 2019; Béjar-Martos et al.,
2022; Werner and Li, 2022; Yang et al., 2024). Even
though they can accommodate the vast size of point
clouds, general problems prevail, including slow data in-
gestions, suboptimal indexing, and intransparent data stor-
age obscured by domain-specific languages and extensions
for access and retrieval.

Systems designed for online analytical processing (OLAP)
workloads, especially columnar architectures, have shown
promising results in query performance (Martinez-Rubi
et al., 2015; Goncalves et al., 2016; Pavlovic et al., 2017).
In this regard, the Lakehouse pattern emerged, combining
the strength of Data Lake and Data Warehouse systems to
overcome their limitations (Armbrust et al., 2021; Schnei-
der et al., 2024). Initial integration of spatial semantics was
investigated, though by adaptation of the underlying for-
mat and neglecting visualization even though emphasized
as an integral part, and without mentioning point clouds at
all (Ait Errami et al., 2023; Zhang et al., 2023).

3 Background

The Lakehouse pattern comprises open direct-access data
formats, first-class support for machine learning and
data science workloads, and state-of-the-art performance
(Armbrust et al., 2021; Schneider et al., 2024). It targets
online analytics in the cloud, where the data resides in
an object store, and computing is disaggregated and on-
demand, which offers the benefit of adapting resources
and tools to the analytical workload without migrating
the data (Ait Errami et al., 2023). As illustrated in Fig-
ure 1, the main components of a lakehouse architecture
for point cloud data analytics are a user-facing frontend
like SQL or DataFrame API, a query engine or compute
engine like DataFusion or Spark, and a data store for ob-
jects like LAS/LAZ or Parquet files.

3.1 File Formats

Many public point cloud datasets from large-scale laser
scanning or photogrammetric reconstruction are dis-
tributed as LAS files or LAZ files, which additionally
integrates LASzip, a non-progressive block compression
scheme (Isenburg, 2013). While delivering exceptional
compression ratio, drawbacks are the computationally ex-
pensive compression scheme, which lacks random access,
the row-based data layout, and the absence of fain-grained
statistics.

File formats such as Apache Parquet and Apache Arrow
are explicitly designed for online analytics, incorporating
features tailored to NoDB or Lakehouse patterns. Apache
Arrow is a language-agnostic columnar data layout spec-
ification for flat and hierarchical data. It supports the key
feature of zero-copy data exchange across language, pro-
gram, and system boundaries, which puts it in the same
performance class as HDF5, Zarr, NumPy, and Tensorflow
(Ahmad, 2022). Through native support in typical analyt-
ical toolings like GDAL, PDAL, Pandas, Tensorflow, and
PyTorch, exchanging data between these tools is possible
at zero cost.

Figure 2. The Apache Parquet file format layout.

Apache Parquet is a column-oriented data file format for
efficient data storage and retrieval, that is heavily in-
spired by Dremel, a design for interactive online analyt-
ics (Melnik et al., 2010, 2020). The format uses a hybrid
storage model, coined Partition Attributes Across (PAX),
where attributes are partitioned vertically (Ailamaki et al.,
2002). These partitions are called row groups and contain
a batch of records where the attributes are stored in col-
umn chunks, further split into pages (Figure 2). Metadata
is located in the footer of the file, including optional min-
max statistics, enabling one to skip parts of the file by
evaluating predicates against it. As such, this serves as a
sparse index for ad-hoc queries, and more importantly, it
can faithfully represent an axis-aligned bounding box of a
set of points.



3.2 Visualization

Data visualization is a fundamental aspect of point
cloud data analytics. When visualizing large point cloud
datasets, one needs to respect the constraint of the graph-
ics processor unit (GPU) being only capable of displaying
several million points. Given such a point budget, retriev-
ing a representative sample in the field of view is the main
retrieval task required to facilitate interactive visualization.

Figure 3. Data organization for point cloud visualization.

Current state-of-the-art file-based solutions for interactive
point cloud visualization predominantly rely on a layered
octree to organize the data (Gobbetti and Marton, 2004).
The fundamental idea behind this is to sample points and
assign them to a certain level of the hierarchical space par-
titioning tree corresponding to the Level of Detail (LoD)
for efficient retrieval. Figure 3 illustrates the basic steps
of partitioning a point cloud (a) into a layered space par-
titioning tree (b) and the corresponding layout of standard
formats (c) compared to Parquet (d).

4 Methods

This chapter outlines the method employed to integrate
point clouds into a Lakehouse architecture.

4.1 Point Cloud Representation

In its basic form, a point cloud can be formalized as a set
of points P in space, most commonly a three-dimensional
Euclidean space. Each point pi ∈ P is a set of attribute
values of which coordinates represent the spatial location.
Additionally, other attributes like time or importance can
be considered as dimensions, leading to the following def-
inition of a point cloud:

P ⊆ Rn ×
m∏
i=1

Di (1)

where Rn is the metric space and Di a specific attribute
domain. From this definition, it follows naturally that point

clouds can be represented as a table where rows are point
records and columns are attributes with a subset thereof
representing a geometric point in Rn. Correspondingly,
the LAS Point Data Record Formats can be represented
lossless in Apache Arrow.

4.2 Data Partitioning

The fundamental aspect of partitioning is to support per-
formant data retrieval by facilitating lowering the amount
of data required to be processed to evaluate search pred-
icates (Ait Errami et al., 2023). For spatial data, space
or data partitioning schemes like grid, trees, and space-
filling curves are commonly employed to split records into
bounding volumes with low extent and overlap (Beckmann
et al., 1990; Samet, 1984). In this work, we propose a novel
windowed bounding volume partitioning algorithm to ef-
ficiently organize point clouds into arbitrary space parti-
tioning schemes (Algorithm 1).

The algorithm splits the extent of the point cloud into a
set of reading windows W and target partitions BV . The
reading windows are processed iteratively and define the
subset of data to read, which is then mapped to the over-
lapping bounding volumes of the target partitions in mem-
ory. They are written to disk once they do not overlap with
any remaining reading windows.

How the reading windows W are defined is crucial for the
algorithm’s performance. It is a tradeoff between the cov-
erage of bounding volumes and reading window size that
can result in either inefficient reading or high memory us-
age. However, the benefit is that one can adapt to the exist-
ing data characteristics and desired partitioning scheme to
optimize for the available resources, and since the bound-
ing volumes are mutually independent, parallelization is
straightforward.



4.3 Importance Augmentation

A semantic notion of importance is required to partition
point cloud data for visualization. Considering a layered
tree, points are assigned to the nodes so that each node
contains an equal amount of points, constituting a repre-
sentative sample within its bounds. Another approach is
assigning a continuous importance level (van Oosterom
et al., 2022), which is embodied in this work through aug-
menting each point with a random uniform importance
value i ∈ [0,1[.

Defining a quadtree or octree hierarchy incorporating the
above importance semantics while somewhat respecting a
certain amount of points per cell m requires finding out
the depth d of the tree. This can be naively done by the
following formula:

d= ⌈logp(
n

m
)⌉ (2)

where n is the number of points normalized by the area
of the minimum bounding rectangle, and p is the num-
ber of child nodes. From this, the importance range for
a certain level can be derived and added as a dimension
to the target bounding volumes, which then can be used
to sample points to the respective nodes. This method has
the added benefit that arbitrary sampling queries can be
formulated and executed as range queries (Teuscher and
Werner, 2024).

4.4 Implementation

The system used to exemplify this approach is built
around DataFusion, an extensible query engine for build-
ing data-centric systems using Apache Arrow as the in-
memory format (Lamb et al., 2024). DataFusion offers a
TableProvider interface that facilitates the integration of
custom data sources. Integrating LAZ files entails trans-
forming the chunks into a stream of record batches which
enables the ad-hoc use of SQL and the DataFrame API
on LAZ files in DataFusion. Optionally, statistics for LAZ
chunks are extracted through a complete scan to improve
retrieval performance by pruning with spatial range pred-
icate push-down. For Apache Parquet, such statistics are
readily available from the metadata in a much more re-
fined way. While these statistics are a key feature enabling
the format’s viability for a NoDB, respective Lakehouse
approach, internal partitioning needs careful consideration
to facilitate effective and efficient query processing.

4.5 Data and Software Availability

Research code and computational workflows supporting
this publication are available on GitHub (https://github.
com/tum-bgd/2025-AGILE-Lakehouse).

5 Evaluation and Experiments

In this section, we present the evaluation of our approach
using different experiments and metrics. The dataset used
is the Actueel Hoogtebestand Nederland (AHN3) in the
LAZ file format, respectively two subsets thereof: one with
about 200 million and another with about 2 billion points,
to make the results comparable to benchmarks from the lit-
erature (van Oosterom et al., 2015). All experiments here-
after are conducted on a mobile computer with eight cores
(16 threads), 32 GB memory, and 1 TB SSD.

5.1 Storage Footprint

The storage footprint of representing point clouds in
Apache Parquet is shown in Table 1. It features different
coordinate encodings and compression methods compared
to LAS and LAZ as a relative baseline.

Table 1. Storage footprint of various coordinate encodings com-
pared relative to LAZ.

Format Coords cLoI Compression Size (rel.)

LAS i32a - - 4.25
LAZ i32a - LASzip 1.00
Parquet i32b - - 2.76
Parquet f64 - 3.71
Parquet f64 f32 - 4.26
Parquet i32b - zstd(level3) 1.56
Parquet f64 - zstd(level3) 1.59
Parquet f64 f32 zstd(level3) 2.10
Potree (missing) - - 4.12

a Scale and offset in header.
b Scale and offset per point.

The results show that the storage footprint outperforms
LAS without compression and is only about 1.5 times
larger than LAZ with compression for grid-rounded co-
ordinate encoding. With resolved coordinates and added
importance, the uncompressed version is still in the range
of LAS and Potree, while compressed about twice that of
LAZ. The evaluation shows that storing point clouds in
Apache Parquet is acceptable in terms of storage footprint.
While compression for archival and publication still makes
sense, abundant and cheap storage strongly suggests not
applying block compression for analytical fidelity, and if
so, prefer faster codecs with lower compression perfor-
mance (Zeng et al., 2023).

5.2 Data Loading

Data loading is often evaluated as the time it takes to in-
gest the data from its source into a system until it is ready
for querying. In our case, this entails converting from one
file format to another. In Table 2, we measured the data
loading time and throughput of four LAZ source files con-
taining about 2 billion points.
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Table 2. Data loading performance of ∼2B points.

Format Partitioning Statistics Time Throughput

LAZ - file 0.0s -
LAZ - chunk 90.6s 22.0MP/s
Parquet - page 209.3s 9.5MP/s
Parquet grid(xy) page 375.6s 5.3MP/s
Parquet grid(xyi) page 358.6s 5.6MP/s
Parquet quadtree page 398.2s 5.0MP/s
Potree octree node 424.5s 4.7MP/s

Loading LAZ files only takes a split second since no data
is processed except extracting the spatial extent from the
headers to create statistics for pruning files. When addi-
tionally extracting the statistics of the LAZ chunks and
cache in memory, a throughput of about 22 million points
per second is reached with one io lane and decoding in
parallel on all threads.

Partitioning with the windowed bounding volumes parti-
tioning algorithm takes about the same time regardless of
the applied scheme and levels the state-of-the-art perfor-
mance of the PotreeConverter 2.0 (Schütz et al., 2020).
Using Parquet files as the source for partitioning reduces
the time taken by half compared to partitioning from LAZ
with chunk statistics.

5.3 Query Performance

The query performance is evaluated with various range
queries: a small and medium-sized rectangle in the plane
(S_RECT, M_RECT), a neighborhood query with 1000
nearest neighbors (NN_1000), and a sampling range query
with a fixed point budget of 700’000 points (I_700k). To
assess the scalability, each query is evaluated on the 200
million and 2 billion points (Table 3). The results are based
on uncompressed Parquet files, whereas with zstd com-
pression, the runtime of the queries increased on average
by about a factor of two. Additionally, the queries are run
directly on the compressed LAZ files with and without
chunk statistics for comparison.

Overall, the results match the highest-performing solu-
tions among the state-of-the-art PostgreSQL with pgPoint-
cloud, PDAL, MonetDB, and even Oracle Exadata (van
Oosterom et al., 2015). Across all queries and datasets,
Parquet with hierarchical partitioning is the only approach
with < 0.5s query time.

5.4 Interactive Visualization

To evaluate the potential of our approach for interactive
visualization, we simulated typical visualization queries
at various levels of detail over the dataset with 2 billion
points partitioned with a hierarchical scheme. Once the
queries are retrieved with DataFusion and alternatively, an
R*-tree from the statistics is created to identify intersect-

ing row groups, which are then read directly from the Par-
quet files and refined by filtering.

Figure 4. Vizualization query performance on different levels.

The results in Figure 4 show that the runtime of the visu-
alization queries is, on average, below 300 ms with Data-
Fusion and even below 100 ms when using an R*-tree in-
dex. The result set contains, on average, about 350’000
points, and reducing the result set to about 85’000 points
displayed only slightly lower response times. This is fast
enough for interactive visualization and leaves room for
network overhead to power web-based viewers, outper-
forming similar approaches (Meijers, 2022).

6 Conclusion

In this paper, we investigate the potential of emerging ap-
proaches and well-established technologies from big data
for point cloud data management. Founded on the Lake-
house pattern, we presented a novel approach that offers
scalable and performant analytics capabilities while simul-
taneously supporting visualization through an efficient and
versatile space partitioning procedure. Without any active
components, such as a database producing continuous re-
source usage, it is ideally suited to cloud and elastic com-
puting. The presented approach further shows that rely-
ing on generic and composable systems can bring certain
advantages compared to niche domain-specific solutions.
Especially for point clouds, it is possible to make geo non-
special for many use cases and thereby access the potential
of a feature-rich state-of-the-art ecosystem.
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Table 3. Query performance of selected queries on ∼200M and ∼2B points; small rectangle (S_RECT), medium rectangle (M_RECT),
nearest neighbours (NN_1000) and importance (I_700k).

Dataset AHN3 extract with ∼200M AHN3 extract with ∼2B

Query S_RECT M_RECT NN_1000 I_700k S_RECT M_RECT NN_1000 I_700k
Points returned 74k 726k 1k 700k 74k 726k 1k 700k
Selectivity 0.5‰ 4.0‰ 0.025‰ 3.50‰ 0.037‰ 0.363‰ 0.002‰ 0.350‰

LAZ 12.976s 13.003s 13.599s 13.787s 23.304s 23.295s 23.312s 90.415s
LAZ + statistics 0.427s 0.848s 0.378s 13.359s 0.194s 0.514s 0.104s 114.891s
Parquet (convert) 0.212s 0.282s 0.219s 0.819s 0.311s 0.364s 0.537s 11.130s
Parquet (grid xy) 0.126s 0.173s 0.123s 0.773s 0.288s 0.321s 0.313s 12.185s
Parquet (grid xyi) 0.192s 0.264s 0.151s 0.460s 0.328s 0.362s 0.446s 1.305s
Parquet (quadtree) 0.149s 0.221s 0.130s 0.167s 0.311s 0.376s 0.333s 0.488s
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