Extending the Applicability of Bloom Filters by
Relaxing their Parameter Constraints

Paul Walther[0000-0002-5101-5793] \Yeidene Mansourl0009—0008—4362-2092]

Johann Maximilian Zollner[0000-0003—3742-8468] "5 Martin
Werner|0000-0002—6951-8022]

TUM School of Engineering and Design
Technical University of Munich, Munich, Germany
{paul.walther,wejdene.mansour ,maximilian.zollner ,martin.werner}@tum.de

Abstract. Bloom filters serve as an efficient probabilistic data structure
for representing sets of keys. They allow for set membership queries with
no false negatives and with the right choice of the main parameters —
length of the Bloom filter (BF), number of hash functions used to map
an element to the array’s indices, and the number of elements inserted —
the false positive rate is optimized. However, the number of hash func-
tions is constrained to integer values, and the length of a BF is usually
chosen to be a power of two to allow for efficient modulo operations using
binary arithmetic. In this paper, we relax these constraints by proposing
the Rational Bloom filter, which allows for non-integer numbers of hash
functions. This results in optimized fraction-of-zero values for a known
number of elements to be inserted. We further enhance this with the
Variably-Sized Block BF to allow for a flexible filter length, especially
for large filters, with efficient computation.

Keywords: Bloom Filter - Key-Value-Store - Filter Length - Hash Func-
tion.

1 Introduction

Key-value stores proved themselves as an efficient storage model to support all
steps in the data life cycle [9] [27]. Since large, sparse, and low-cardinality data
can be modelled as a set and the access is often random, the requirements for
an efficient in-memory representation are similar to those of a Key-Value Store.
In this context, the Bloom filter (BF) was proposed as a data structure since it
allows for a trade-off between its memory footprint and its error rate [19] 26].
The BF is a data structure for the efficient probabilistic storage of sets [4]. It
is a binary array with methods for storing information in the filter and querying
for set membership. An empty BF is an all-zero bit array of length m. Due
to its structure, the BF guarantees true for inserted items (no false negatives)
but may falsely report uninserted items to be true (false positives) [T, 26]. To
insert an element x, the element is hashed with & uniformly distributed pairwise
independent hash functions H;, with ¢ € {1,...,k}. The hashing maps from the



input space of all elements (universe) to the integer range {0,...,m — 1}. The
BF is then set to 1 at the locations denoted by the same hash functions H;. If
the given value is already 1, it remains unchanged. For the membership query,
the BF checks the k indices computed by H;. If any of the denoted values is
0, the element is not part of the stored set. Otherwise, if all values are 1, the
element is present, or it is a false positive error [14]. Given n elements to store,
the false positive rate ppp of the BF can be calculated as [21]:

En\ K
prp = (1 - <1 - ;) ) ~ (1 fe*’m/M)k. (1)

The optimal number of hash functions k£* minimizes ppp with a fraction of
zeros foz = % This maximizes the entropy of the filter and holds the highest
information density, yielding

m
k"= —1In2. 2
" @)

Nayak and Patgiri explain five main challenges with existing BF approaches:
to reduce the prp, the length adaption of BF's to initially unknown dataset sizes,
the deletion of elements without recalculation of the whole index, to implement
an efficient hashing method without negatively influencing the performance,
and the correct determination of k [22]. An approach to these challenges is the
relaxation of the constraints on the parameters m, k, and n.

In the literature, k is restricted to integers. This reduces flexibility in con-
structing the optimal filter for given m and n, and especially for small k, this
may result in a non-optimal ppp. Figure [I] illustrates how an unconstrained,
optimal choice of k can lead to improved ppp. Furthermore, ppp is unevenly
distributed across elements in multi-hash BFs [I]. As for hash collisions, similar
slots denoted by different hash functions for one element increase false positives,
and to avoid this effect, using fewer hash functions is beneficial.

General hash functions h; have to be modified to specific hash functions
H;, mapping the input space to indices of the BF {0,...,m — 1}. The simplest
method is to take the modulo h;%m. It is most efficient for m = 2¢ ¢ € Ny as it
simplifies to a binary AND (A) operation [10]:

H;(x) = hy(x) mod m = h;(z) A (2°—1) (3)

Still, in computer systems, which allocate memory in power of two increments,
this restriction may have downsides if, for example, some space is already used
by the operating system. Then, the BF may have at most half of the available
memory size. Consequently, freely choosing m might improve the scalability and
while keeping the efficient modulo operations [I, 10].

In this paper, we propose methods to extend the applicability of Bloom filters
based on visions from [25]. First, we introduce a method for a rational num-
ber instead of only an integer number of hash functions k, which decreases
false positive rates if the set is immutable, as it allows for more tailored BFs.
Further, we propose a method to choose non-power-of-two sizes m for the



False Positive Rate vs. Amount of Hash functions, Filter Size m=8192

X
Lx

Number of Samples:
_1 — 6000

False Positive Rate

— 4000 Optimal k & False
Positive rate

0 2 4 6 8 10 12 14 16 18 20
Amount of Hash Functions k

Fig. 1. Dependency of the false positive rate for a fixed filter size of m = 8192 on
varying numbers of hash functions k and number of samples. The calculated optimal
configuration for each number of samples is marked with a cross.

BF without performance degradation (by non-uniformity of access) and
still without explicit modulo computations.

2 Rational Bloom Filter

For BFs, the theoretically optimal number of hash functions k*, denoted by Eqn.
[2] is generally not an integer but a rational number. Still, traditional BFs allow
for an integer number of hash functions only, requiring an approximation of the
optimal k£*. Allowing a non-integer k* for a BF with known n and a constrained
m (e.g., by hardware) poses the advantage to improve the false positive rate
and allows for more flexibility in selecting other BF parameters. Therefore, we
propose a probabilistic approach to realize rational k*.

Definition 1. A hash function is probabilistically activated if it is not ap-
plied to every sample, but instead only activated with a probability of activation
0 < Pactivation < 1, Dactivation € R.

Based on this and the knowledge that the applied hash functions H, with r < | k]
give pseudo-random information which is still deterministic for a given input
sample, we develop the Rational Bloom filter (RBF), which is visualized in Fig.

Rational Bloom Filter, e.g., k = 2.3 Variably-Sized Block Bloom Filter, e.g.,, m = 11
H.
p(H, () [ ] p(H() H () (H @) (IS 1|
0 mpp-1 0 mpp -1 0 my mpp-1 0 my  my mpp-1
Probabilistic activation of last hash I—\ T —
p(Ha(x functions (deterministic on input) for p(Hz () p(H5()) [ 1, [Hs6
0 mpp-1 smaller FP rate 0 my mge-l 0 my mpp-1
— Block-based dividing of non-2¢ length
T p(H;()) HsGI|  Brsinto BFs with m = 2¢
0 my mpp-1

Fig. 2. Rational Bloom filter and Variably-Sized Block Bloom filter



Definition 2. A Rational Bloom filter (RBF) is a BF with a non-integer
number k € RT of hash functions, consisting of standard BF procedures for | k|
hash functions, while a hash function with probabilistic activation represents the
non-integer part k — | k].

This can be implemented as described in Alg. [1} including the Hashing Trick [I8§].

Algorithm 1: Application of Hash Functions in the RBF

Data: Element z, BF BF with length m, set of always-applied hash functions
{Hi,...,H|)}, probabilistically activated hash function H 1,
rational number of hash functions k;

Result: Set BF bits for indices denoted by the rational number of hash values

of input element x
for each Hj m {]Jl7 .. 7HU€J} do
| Set BF[H,(z)] + 1;
Set Pactivation — k — I_kj7
Random hash value H,(z) € [0,m]; // No additional calculation needed if we,
e.g., choose H.(x) = H ;) (x);
if H.(z) < (pactivation - m) then
| Set BF[H j41(z)] + 1;

W -

o ot

Lemma 1. The RBF has no false negatives.

Proof. The given RBF with k normal and one probabilistically activated hash
function H|y) 41 has at least as many 1-bits in the filter as the normal BF with
| k] hash functions since H ;)41 can only add 1’s. A false negative would require
a query to expect a 1 in the BF where none exists. For H; to H|j), this cannot be
the case by definition of the standard BF. For H 1, activation is deterministic
per input, which makes an activation during query without activation during
insertion impossible.

Theorem 1. The false positive rate p?ﬁF of the RBF is smaller or equal to the
false positive rate pBE of a normal BF: pREF < pBE

Proof. As described in Eqn. 2| £* is solely determined by n and m with the
assumption that the highest information can be stored for a fraction of zero
Joz,p = % For one standard BF with kpr hash functions and one RBF, the
RBEF’s krpr is chosen to be optimal, kggr = k*. Based on the construction of k*
as a minimia of the false positive rate ppp and the monotonicity of this function
we can conclude that prp(k*) < prp(krpr)Vkrpr # k*. For kgr = krpr the

optimal k* is an integer. Therefore, BF = RBF and consequently pg‘gF = pgg.

Consequently, RBF's serve as a new possibility to allow for a more flexible
choice of the number of hash functions. In the following we extend this idea to
variable filter lengths.



3 Variably-Sized Block Bloom Filters

For a given BF we can number each slot from 0 to m — 1 and this set of indices
Igp can be represented with J non-overlapping subsets I%p of length m; =
2¢,c € N. We can then define subset hash functions Hj;, which only map onto
their respective subset I, each. This can be used to efficiently compute hash
functions for m # 2¢, ¢ € Ny.

Definition 3. The Variably-Sized Block Bloom filter (VSBBF) is a BF of
length mpr, with 2¢ < mpp < 2°T! ¢ € Ny, where the actual filter is subdivided
into J blocks of sizes mj,j € {1,...,J} with m; > m;y1 and m; = 2° ¢ €
N. Each block is denoted by a set of indices I7 and is filled by k; subset hash
functions H} kj € R is thereby the optimal k} for the respective filter block.

Unlike a standard BF, the VSBBF, visualized in Fig. [2 maps hashes to blocks
of length 2¢ using efficient modulo operations as described in Alg.

Algorithm 2: Inserting an Element in the VSBBF

Data: Element z, total elements to insert n, VSBBF BF of total length mgr,
uniform, pairwise independent hash functions h1, hs
Result: Inserted element x into the VSBBF
binary < BinaryRepresentation(mgpr);
length < Length(binary);
hvs « hi(z), ha(x);
offset < 0;
for j < 0 to length - 1 do
if binary[j] == 1 then
m; 21ength—j—1;
kj < % -1n 2;
for i + 0 to k; do
H;(z) = ((hvs1 + (1 + mj) - hvs2)&(m; — 1)) + offset;
BF[H;(x)] + 1;
offset += my;

© 0 N O UAWN R

[
N = O

Lemma 2. The VSBBF has no false negatives.

Proof. By definition, the filter blocks are all either normal or RBF's, and thus,
it follows from Lemma [l| that the Block BF has no false negatives.

Theorem 2. The false positive rate of VSBBF is calculated with the chain rule
PR = Ty I, (1= ebom/m) .

Proof. For several BFs representing the same set, which is similar to hash func-
tions only mapping to subsets of the BF, deciding whether a queried sample is
in the desired set is always requires checking all applied hash functions. An item

can only be false positive if these all point wrongly to a 1 element. This is equal
to all subset BFs wrongly denoting the element to be in the set.



Corollary 1. For the optimal choice of k;j = kj, the false positive rate of the
combined filters of length m; = 2% stays the same as the single BF of size mpp:

k; k
PERF n H (1 - eikj"/m-’) T = (1 - eik"/mBF) N ppp- (4)
J

Proof. With Eqn. 2| for optimal k] = % In2 and £* = == In 2:
TBE 1 2

[[—e 2™ o (o)™ 5)

J

and as Zj m; = mpr by construction, for the choice of optimal £} it holds
Block

Prp ot = pgg as we can assume optimality from RBF paradigms.
Theorem 3. The Block BF improves the equal distribution of false positives
over the to-be-tested elements compared to a standard BF of the same size.

Proof. An element is more likely to be a false positive if its footprint has fewer 1’s
due to clashing hash values, increasing the risk of overlap with existing elements
in the BF. For a fully filled filter with foz = 0.5 the false positive rate is ppp =
0.5% and for o clashing hash functions it increases to pCFII%Sh =0.5(F=9) > ppp.

For a given Block BF, the sum of applied hash functions > y k} is equal to the
optimal number k* for a filter of the summed lengths of the blocks m =3 m;.
The probabilities for one element = being inserted into a filter BF with k* hash
functions having less than k* hash values are

k=1, kj—1 i
2 Block § E
Dclash = ) Pclash — . (6)
— MBF — = m;
=1 Jj =1

Block

After reformulation, we can show for all J > 1 that pelash > P

Corollary 2. The proposed solution requires mo storage overhead for the de-
scription of the block sizes m; and the number of hash functions k;.

Proof. This information is contained in the non-blocked representation’s prop-
erties, the assumption that blocks are sorted descendingly with m; 1 < m; and
the rule that the optimal number of hash functions k7 is always chosen per block.

The proposed solution reduces processing time: t(BF) > t(BFB°k) for insertion
and querying, when mpp # 2¢ ¢ € Ny and Zj m?lo"k = mpr and the runtime
of one modulo calculation by mpg # 2¢ is computationally more expensive than
the computation of J modulo operations with the binary bit trick [24].

A further advantage of Block BF is the easy and meaningful compression by
simply taking subsets of the filter, which comprise a certain number of blocks.
In tendency, this enables more compression steps than the standard BF of size
mpr = 2° as not only halving the size is possible but also any combination of

block sizes applied in the BF. Available compression ratios are %Bn; , with 7 C j.



False Positive Rate vs. Amount of Hash functions, Filter Size m=131072

Number of Elements:
70000
—— 80000
90000
—— 100000
Fraction of Zeros 0.5:0.02

Calculated Optimal k &
False Positive rate

False Positive Rate

Amount of Hash Functions k

Fig. 3. False positive rate of RBF's with filter size 131,072 for different k& and n, queried
on 10,000 unseen elements. Experiments with foz = 0.5 £ 0.02 are shadowed grey.
Theoretically optimal configurations are denoted by a cross.

4 Implementation Artifacts

To validate our theories, we implemented RBF and VSBBF in C++ with a Mur-
mur Hash using the hashing trick and efficient modulo calculation with binary
arithmetic. As a baseline, we also implemented a standard BF with the same
optimizations. Interestingly, RBF showed unexpected artifacts: The false posi-
tive rate has local minima not at the theoretically optimal rational k*, but near
integer values instead, as shown in Fig[3] For example, with m = 131,072 and
n = 60,000, the global minimum occurs at k = 2 and another local minimum at
k = 1, although the optimal value lies in between. This was counterintuitive, and
we cannot yet fully explain it. We suspect this is due to the non-uniform behav-
ior of the hashing algorithm. However, similar artifacts were also observed with
SHA256, which should lead to a more uniform distribution of hash values. Addi-
tionally, larger filter sizes and numbers of elements inserted did not mitigate this,
though logically, this should reduce the impact of non-uniform hash functions.
Comparing the foz of the near-optimal RBF and BF's with integer k shows that
RBF achieves better foz rates. For VSBBF), the false positive rates are similar to
a standard BF', but no insertion time improvements were observed. Although our
practical results fall short of the theoretical gains, we still believe our methods
are a valuable contribution to BF theory and open new application possibilities,
especially for learned BF approaches and input-dependent hash functions.

5 Related Work

To the best of our knowledge, no prior work addresses rational numbers of hash
functions, though many improve the hashing: Perfect hashing uniformly maps
inputs to m buckets [14]. Common hash functions like Murmur Hash [2] are used
with consecutive modulo operations. For & > 2, double hashing calculates two
hashes and combines them h;(z) = hq(z) + f(¢)ho(x) [14, [I8]. Partitioned hash-
ing [14] assigns each function disjoint ranges of length m/k, which may increase



false positives due to more 1s. Hao et al. group inputs and apply different uni-
form hash functions, optimizing for the highest foz [I7]. Bruck et al. allocates
hash functions based on query likelihood [7]. In [27], non-uniform hash functions
and float-based representations on GPUs come at the cost of higher memory and
complexity; unlike our RBF, which only relaxes parameter constraints. Several
BFs adapt their size to the number of elements. Incremental BF [15] sets a fill
threshold for a minimum foz and adds new filters when reached. Similarly, [I]
proposes adding plain BFs of increasing size m; = mq - s'~!, applying a geomet-
ric progression on error bounds to keep false positives and elements-per-filter
constant. Slicing assigns distinct BF regions per hash function to avoid overlap
and achieves more uniform false positives [IL [6) 8]. Dynamic BF [13] supports
deletions and is adopted from Counting BFs [5], [12] and Block BF [23], which
consists of multiple small cache-line-sized BFs and inserts each element in just
one. Furthermore, Combinatorial BF and Partitioned Combinatorial BF [16] use
a set of BFs when one element belongs to several sets and partition a BF into
smaller ones of similar size. These approaches split the BF into smaller pieces for
scalability or memory locality, but still use power-of-two sizes and similarly-sized
filter subparts. Last, learned BF's mimic BFs with a learned function, allowing
false negatives and using a small BF to filter them out [20]. Beyond direct im-
provements to BFs, Quotient [3] and Cuckoo Filters [1I] enhance data locality
and space efficiency, and support deletions without recalculations, often outper-
forming BFs. Still, BFs variants remain popular in data management systems
for their simple architecture. Our approaches allow for improvements in these
domains without a general change in system architecture.

6 Conclusion

By relaxing the classic constraints on Bloom filter parameters, such as requiring
a natural number of hash functions and filter sizes that are powers of two, we
present two new BF designs. The RBF uses a probabilistic activation of hash
functions, which is still deterministic with respect to the inputs to mimic the
theoretically optimal number of hash functions. We prove that this theoretically
achieves superior false positive rates compared to standard BF's of the same size.
Further, VSBBFs allow for variable filter sizes and efficient modulo operation,
enabling a better distribution of false positives over all elements in the universe,
as a clash of hash functions is less probable. The probabilistic activation of hash
functions in RBFs opens new research directions, e.g., how learned approaches
might use rational numbers of hash functions. This extends existing approaches
that only rely on learned pre-filters to increase learned BF’s efficiency.

Acknowledgements

This work is funded by the Deutsche Forschungsgemeinschaft (DFG, German
Research Foundation) - 507196470.



Bibliography

[1] Almeida, P.S., Baquero, C., Preguica, N., Hutchison, D.: Scalable Bloom
Filters. Information Processing Letters 101(6), 255-261 (2007). https://
doi.org/10.1016/;.ipl.2006.10.007

[2] Appleby, A.: aappleby/smhasher: MurmurHash: GitHub Repository (2008),
https://github.com /aappleby/smhasher

[3] Bender, M.A., Farach-Colton, M., Johnson, R., Kraner, R., Kuszmaul, B.C.,
Medjedovic, D., Montes, P., Shetty, P., Spillane, R.P., Zadok, E.: Don’t
thrash: How to Cache your Hash on Flash. Proceedings of the VLDB Endow-
ment 5(11), 1627-1637 (2012). lhttps://doi.org/10.14778/2350229.2350275

[4] Bloom, B.H.: Space/time trade-offs in hash coding with allowable errors.
Communications of the ACM 13(7), 422-426 (1970). https://doi.org/10.
1145/362686.362692

[6] Bonomi, F., Mitzenmacher, M., Panigrahy, R., Singh, S., Varghese, G.: An
Improved Construction for Counting Bloom Filters. Lecture Notes in Com-
puter Science, vol. 4168, pp. 684-695. Springer Berlin Heidelberg (2006).
https://doi.org/10.1007,/11841036 61

[6] Bose, P., Guo, H., Kranakis, E., Maheshwari, A., Morin, P., Morrison, J.,
Smid, M., Tang, Y.: On the false-positive rate of Bloom filters. Inf. Process.
Lett. 108(4), 210-213 (2008). [https://doi.org/10.1016/7.ipl.2008.05.018

[7] Bruck, J., Gao, J., Jiang, A.: Weighted Bloom Filter. In: 2006 IEEE In-
ternational Symposium on Information Theory. pp. 2304-2308. John Wiley
(2006). https://doi.org/10.1109/ISIT.2006.261978

[8] Chang, F., Wu-chang Feng, Kang Li: Approximate caches for packet clas-
sification. In: IEEE INFOCOM 2004. pp. 2196-2207. IEEE (2004). https:
//doi.org/10.1109/infcom.2004.1354643

[9] DeCandia, G., Hastorun, D., Jampani, M., Kakulapati, G., Lakshman, A.,
Pilchin, A., Sivasubramanian, S., Vosshall, P., Vogels, W.: Dynamo: ama-
zon’s highly available key-value store. ACM SIGOPS Operating Systems
Review 41(6), 205-220 (2007). https://doi.org,/10.1145/1323293.1294281

[10] Estébanez, C., Saez, Y., Recio, G., Isasi, P.: Performance of the most com-
mon non-cryptographic hash functions. Software: Practice and Experience
44(6), 681-698 (2014). |https://doi.org/10.1002/spe.2179

[11] Fan, B., Andersen, D.G., Kaminsky, M., Mitzenmacher, M.D.: Cuckoo Fil-
ter. In: Proceedings of the 2014 CoNEXT: December 2-5, 2014, Sydney, Aus-
tralia, pp. 75-88. ACM (2014). https://doi.org,/10.1145/2674005.2674994

[12] Fan, L., Cao, P., Almeida, J., Broder, A.Z.: Summary cache. ACM SIG-
COMM Computer Communication Review 28(4), 254-265 (1998). https:
7 /doi.org/10.1145/285243.285287

[13] Guo, D., Wu, J., Chen, H., Yuan, Y., Luo, X.: The Dynamic Bloom Filters.
IEEE Transactions on Knowledge and Data Engineering 22(1), 120-133
(2010). https://doi.org/10.1109/TKDE.2009.57


https://doi.org/10.1016/j.ipl.2006.10.007
https://doi.org/10.1016/j.ipl.2006.10.007
https://doi.org/10.1016/j.ipl.2006.10.007
https://doi.org/10.1016/j.ipl.2006.10.007
https://github.com/aappleby/smhasher
https://doi.org/10.14778/2350229.2350275
https://doi.org/10.14778/2350229.2350275
https://doi.org/10.1145/362686.362692
https://doi.org/10.1145/362686.362692
https://doi.org/10.1145/362686.362692
https://doi.org/10.1145/362686.362692
https://doi.org/10.1007/11841036\_61
https://doi.org/10.1007/11841036_61
https://doi.org/10.1016/j.ipl.2008.05.018
https://doi.org/10.1016/j.ipl.2008.05.018
https://doi.org/10.1109/ISIT.2006.261978
https://doi.org/10.1109/ISIT.2006.261978
https://doi.org/10.1109/infcom.2004.1354643
https://doi.org/10.1109/infcom.2004.1354643
https://doi.org/10.1109/infcom.2004.1354643
https://doi.org/10.1109/infcom.2004.1354643
https://doi.org/10.1145/1323293.1294281
https://doi.org/10.1145/1323293.1294281
https://doi.org/10.1002/spe.2179
https://doi.org/10.1002/spe.2179
https://doi.org/10.1145/2674005.2674994
https://doi.org/10.1145/2674005.2674994
https://doi.org/10.1145/285243.285287
https://doi.org/10.1145/285243.285287
https://doi.org/10.1145/285243.285287
https://doi.org/10.1145/285243.285287
https://doi.org/10.1109/TKDE.2009.57
https://doi.org/10.1109/TKDE.2009.57

[14] Gupta, D., Batra, S.: A short survey on bloom filter and its variants. In:
2017 International Conference on Computing, Communication and Automa-
tion (ICCCA). pp. 1086-1092 (2017). https://doi.org/10.1109/CCAA.2017.
8229957

[15] Hao, F., Kodialam, M., Lakshman, T.V.: Incremental Bloom Filters. In: IN-
FOCOM 2008. The 27th Conference on Computer Communications. IEEE.
pp. 1067-1075. IEEE Computer Society (2008). https://doi.org/10.1109/
INFOCOM.2008.161

[16] Hao, F., Kodialam, M., Lakshman, T.V., Song, H.: Fast Multiset Mem-
bership Testing Using Combinatorial Bloom Filters. In: IEEE INFOCOM
2009. pp. 513-521 (2009). |https://doi.org/10.1109/INFCOM.2009.5061957

[17] Hao, F., Kodialam, M., Lakshman, T.V.: Building high accuracy bloom
filters using partitioned hashing. In: Proceedings of the 2007 ACM SIG-
METRICS. pp. 277-288. ACM Digital Library (2007). https://doi.org/10.
1145/1254882.1254916

[18] Kirsch, A., Mitzenmacher, M.: Less Hashing, Same Performance: Build-
ing a Better Bloom Filter. In: Algorithms u2013 ESA 2006, Lecture Notes
in Computer Science, vol. 4168, pp. 456—467. Springer Berlin Heidelberg
(2006). https://doi.org/10.1007/11841036 42

[19] Lu, G., Nam, Y.J., Du, D.H.C.: BloomStore: Bloom-Filter based memory-
efficient key-value store for indexing of data deduplication on flash. In: 2012
IEEE 28th Symposium on Mass Storage Systems and Technologies. pp. 1-
11. IEEE (2012). [https://doi.org/10.1109/MSST.2012.6232390

[20] Mitzenmacher, M.: A Model for Learned Bloom Filters and Optimizing
by Sandwiching. In: Advances in Neural Information Processing Systems.
vol. 31. Curran Associates (2018), https://proceedings.neurips.cc/paper
files/paper /2018 /file/0f49c¢89d1e7298bb9930789c8ed59d48- Paper.pdf’

[21] Mullin, J.K.: A second look at bloom filters. Communications of the ACM
26(8), 570-571 (1983). https://doi.org/10.1145/358161.358167

[22] Nayak, S., Patgiri, R.: A Review on Role of Bloom Filter on DNA Assem-
bly. IEEE Access 7, 66939-66954 (2019). |https://doi.org/10.1109/ACCESS.
2019.2910180

[23] Putze, F., Sanders, P., Singler, J.: Cache-, hash-, and space-efficient bloom
filters. ACM Journal of Experimental Algorithmics 14 (2009). https://doi.
org,/10.1145/1498698.1594230

[24] Reed, I.: A class of multiple-error-correcting codes and the decoding scheme.
Transactions of the IRE Professional Group on Information Theory 4(4),
38-49 (1954). https://doi.org/10.1109/tit.1954.1057465

[25] Walther, P.: Advancements of Randomized Data Structures for Geospatial
Data. In: Proceedings of the Workshops of the EDBT/ICDT 2024 (2024),
https://ceur-ws.org/Vol-3651 /PhDW-1.pdf

[26] Werner, M.: GloBiMapsAI: An Al-Enhanced Probabilistic Data Structure
for Global Raster Datasets. ACM Transactions on Spatial Algorithms and
Systems 7(4), 1-24 (2021). https://doi.org/10.1145/3453184

[27] Werner, M., Schonfeld, M.: The Gaussian Bloom Filter. In: Database sys-
tems for advanced applications, LNCS, vol. 9049, pp. 191-206. Springer
(2015). https://doi.org/10.1007/978-3-319-18120-2 12


https://doi.org/10.1109/CCAA.2017.8229957
https://doi.org/10.1109/CCAA.2017.8229957
https://doi.org/10.1109/CCAA.2017.8229957
https://doi.org/10.1109/CCAA.2017.8229957
https://doi.org/10.1109/INFOCOM.2008.161
https://doi.org/10.1109/INFOCOM.2008.161
https://doi.org/10.1109/INFOCOM.2008.161
https://doi.org/10.1109/INFOCOM.2008.161
https://doi.org/10.1109/INFCOM.2009.5061957
https://doi.org/10.1109/INFCOM.2009.5061957
https://doi.org/10.1145/1254882.1254916
https://doi.org/10.1145/1254882.1254916
https://doi.org/10.1145/1254882.1254916
https://doi.org/10.1145/1254882.1254916
https://doi.org/10.1007/11841036\_42
https://doi.org/10.1007/11841036_42
https://doi.org/10.1109/MSST.2012.6232390
https://doi.org/10.1109/MSST.2012.6232390
https://proceedings.neurips.cc/paper_files/paper/2018/file/0f49c89d1e7298bb9930789c8ed59d48-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/0f49c89d1e7298bb9930789c8ed59d48-Paper.pdf
https://doi.org/10.1145/358161.358167
https://doi.org/10.1145/358161.358167
https://doi.org/10.1109/ACCESS.2019.2910180
https://doi.org/10.1109/ACCESS.2019.2910180
https://doi.org/10.1109/ACCESS.2019.2910180
https://doi.org/10.1109/ACCESS.2019.2910180
https://doi.org/10.1145/1498698.1594230
https://doi.org/10.1145/1498698.1594230
https://doi.org/10.1145/1498698.1594230
https://doi.org/10.1145/1498698.1594230
https://doi.org/10.1109/tit.1954.1057465
https://doi.org/10.1109/tit.1954.1057465
https://ceur-ws.org/Vol-3651/PhDW-1.pdf
https://doi.org/10.1145/3453184
https://doi.org/10.1145/3453184
https://doi.org/10.1007/978-3-319-18120-2\_12
https://doi.org/10.1007/978-3-319-18120-2_12

	Extending the Applicability of Bloom Filters by Relaxing their Parameter Constraints

